Author: Halavanau, A.
Paper Title Page
TUP032 Regenerative Amplification for a Hard X-Ray Free-Electron Laser 118
 
  • G. Marcus, Y. Ding, Y. Feng, A. Halavanau, Z. Huang, J. Krzywiński, J.P. MacArthur, R.A. Margraf, T.O. Raubenheimer, D. Zhu
    SLAC, Menlo Park, California, USA
  • V. Fiadonu
    Santa Clara University, Santa Clara, California, USA
 
  Funding: This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515.
An X-ray regenerative amplifier FEL (XRAFEL) utilizes an X-ray crystal cavity to provide optical feedback to the entrance of a high-gain undulator. An XRAFEL system leverages gain-guiding in the undulator to reduce the cavity alignment tolerances and targets the production of longitudinally coherent and high peak power and brightness X-ray pulses that could significantly enhance the performance of a standard single-pass SASE amplifier. The successful implementation of an X-ray cavity in the XRAFEL scheme requires the demonstration of X-ray optical components that can either satisfy large output coupling constraints or passively output a large fraction of the amplified coherent radiation. Here, we present new schemes to either actively Q-switch a diamond Bragg crystal through lattice constant manipulation or passively output couple a large fraction of the stored cavity radiation through controlled FEL microbunch rotation. A beamline design study, cavity stability analysis, and optimization will be presented illustrating the performance of potential XRAFEL configurations at LCLS-II/-HE using high-fidelity simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP032  
About • paper received ※ 24 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP033 Q-Switching of X-Ray Optical Cavities by Using Boron Doped Buried Layer Under a Surface of a Diamond Crystal 122
 
  • J. Krzywiński, Y. Feng, A. Halavanau, Z. Huang, A.M. Kiss, J.P. MacArthur, G. Marcus, T. Sato, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Improvement of the longitudinal coherence of X-ray Free Electron Lasers has been the subject of many recent investigations. The XFEL oscillator (XFELO) and Regenerative Amplifier Free-Electron Laser (RAFEL) schemes offer a pathway to fully coherent, high brightness X-ray radiation. The XFELO and RAFEL consist of a high repetition rate electron beam, an undulator and an X-ray crystal cavity to provide optical feedback. The X-ray cavity will be based on diamond crystals in order to manage a high thermal load. We are investigating a ’Q switching’ mechanism that involves the use of a ’Bragg switch’ to dump the X-ray pulse energy built-up inside an X-ray cavity. In particular, one can use an optical laser to manipulate the diamond crystal lattice constant to control the crystal reflectivity and transmission. It has been shown that a 9 MeV focused boron beam can create a buried layer, approximately 5 microns below surface, with a boron concentration up to 1021 atoms/cm3. Here, we present simulations showing that absorbing laser pulses by a buried layer under the crystal surface would allow creating a transient temperature profile which would be well suited for the ’Q switching’ scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP033  
About • paper received ※ 21 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP092 XFEL Third Harmonic Statistics Measurement at LCLS 269
 
  • A. Halavanau, C. Emma, E. Hemsing, A.A. Lutman, G. Marcus, C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  We investigate the statistical properties of the 6 keV third harmonic XFEL radiation at 2 keV fundamental photon energy at LCLS. We performed third harmonic self-seeding in the hard X-ray self-seeding chicane and characterized the attained non-linear third harmonic spectrum. We compare theoretical predictions with experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP092  
About • paper received ※ 20 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUD04 Cavity-Based Free-Electron Laser Research and Development: A Joint Argonne National Laboratory and SLAC National Laboratory Collaboration 282
 
  • G. Marcus, F.-J. Decker, G.L. Gassner, A. Halavanau, J.B. Hastings, Z. Huang, Y. Liu, J.P. MacArthur, R.A. Margraf, T.O. Raubenheimer, A. Sakdinawat, T.-F. Tan, D. Zhu
    SLAC, Menlo Park, California, USA
  • J.W.J. Anton, L. Assoufid, K. Goetze, W.G. Jansma, S.P. Kearney, K. Kim, R.R. Lindberg, A. Miceli, X. Shi, D. Shu, Yu. Shvyd’ko, J.P. Sullivan, M. White
    ANL, Lemont, Illinois, USA
  • B. Lantz
    Stanford University, Stanford, California, USA
 
  One solution for producing longitudinally coherent FEL pulses is to store and recirculate the output of an amplifier in an X-ray cavity so that the X-ray pulse can interact with following fresh electron bunches over many passes. The X-ray FEL oscillator (XFELO) and the X-ray regenerative amplifier FEL (XRAFEL) concepts use this technique and rely on the same fundamental ingredients to realize their full capability. Both schemes require a high repetition rate electron beam, an undulator to provide FEL gain, and an X-ray cavity to recirculate and monochromatize the radiation. The shared infrastructure, complementary performance characteristics, and potentially transformative FEL properties of the XFELO and XRAFEL have brought together a joint Argonne National Laboratory (ANL) and SLAC National Laboratory (SLAC) collaboration aimed at enabling these schemes at LCLS-II. We present plans to install a rectangular X-ray cavity in the LCLS-II undulator hall and perform experiments employing 2-bunch copper RF linac accelerated electron beams. This includes performing cavity ring-down measurements and 2-pass gain measurements for both the low-gain XFELO and the high-gain RAFEL schemes.  
slides icon Slides TUD04 [12.425 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUD04  
About • paper received ※ 25 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP071 Progress in High Power High Brightness Double Bunch Self-Seeding at LCLS-II 726
 
  • A. Halavanau, F.-J. Decker, Y. Ding, C. Emma, Z. Huang, A.K. Krasnykh, J. Krzywiński, A.A. Lutman, G. Marcus, A. Marinelli, A. Ratti, D. Zhu
    SLAC, Menlo Park, California, USA
  • C. Pellegrini
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515.
We have previosuly shown that we can generate near TW, 15 fs duration, near transform limited X-ray pulses in the 4 to 8 keV photon energy range using the LCLS-II copper linac, two electron bunches, a 4-crystal monochromator/delay line and a fast transverse bunch kicker. The first bunch generates a strong seeding X-ray signal, and the second bunch, initially propagating off-axis, interacts with the seed in a tapered amplifier undulator, where it propagates on axis. In this paper, we investigate the design of the 4-crystal monochromator, acting also as an X-ray delay system, and of the fast kicker, in preparation of the implementation of the system in LCLS-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP071  
About • paper received ※ 20 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)