Author: Feng, Y.
Paper Title Page
TUP032 Regenerative Amplification for a Hard X-Ray Free-Electron Laser 118
 
  • G. Marcus, Y. Ding, Y. Feng, A. Halavanau, Z. Huang, J. Krzywiński, J.P. MacArthur, R.A. Margraf, T.O. Raubenheimer, D. Zhu
    SLAC, Menlo Park, California, USA
  • V. Fiadonu
    Santa Clara University, Santa Clara, California, USA
 
  Funding: This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515.
An X-ray regenerative amplifier FEL (XRAFEL) utilizes an X-ray crystal cavity to provide optical feedback to the entrance of a high-gain undulator. An XRAFEL system leverages gain-guiding in the undulator to reduce the cavity alignment tolerances and targets the production of longitudinally coherent and high peak power and brightness X-ray pulses that could significantly enhance the performance of a standard single-pass SASE amplifier. The successful implementation of an X-ray cavity in the XRAFEL scheme requires the demonstration of X-ray optical components that can either satisfy large output coupling constraints or passively output a large fraction of the amplified coherent radiation. Here, we present new schemes to either actively Q-switch a diamond Bragg crystal through lattice constant manipulation or passively output couple a large fraction of the stored cavity radiation through controlled FEL microbunch rotation. A beamline design study, cavity stability analysis, and optimization will be presented illustrating the performance of potential XRAFEL configurations at LCLS-II/-HE using high-fidelity simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP032  
About • paper received ※ 24 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP033 Q-Switching of X-Ray Optical Cavities by Using Boron Doped Buried Layer Under a Surface of a Diamond Crystal 122
 
  • J. Krzywiński, Y. Feng, A. Halavanau, Z. Huang, A.M. Kiss, J.P. MacArthur, G. Marcus, T. Sato, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Improvement of the longitudinal coherence of X-ray Free Electron Lasers has been the subject of many recent investigations. The XFEL oscillator (XFELO) and Regenerative Amplifier Free-Electron Laser (RAFEL) schemes offer a pathway to fully coherent, high brightness X-ray radiation. The XFELO and RAFEL consist of a high repetition rate electron beam, an undulator and an X-ray crystal cavity to provide optical feedback. The X-ray cavity will be based on diamond crystals in order to manage a high thermal load. We are investigating a ’Q switching’ mechanism that involves the use of a ’Bragg switch’ to dump the X-ray pulse energy built-up inside an X-ray cavity. In particular, one can use an optical laser to manipulate the diamond crystal lattice constant to control the crystal reflectivity and transmission. It has been shown that a 9 MeV focused boron beam can create a buried layer, approximately 5 microns below surface, with a boron concentration up to 1021 atoms/cm3. Here, we present simulations showing that absorbing laser pulses by a buried layer under the crystal surface would allow creating a transient temperature profile which would be well suited for the ’Q switching’ scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP033  
About • paper received ※ 21 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP035 Sensitivity of LCLS Self-Seeded Pedestal Emission to Laser Heater Strength 126
 
  • G. Marcus, D.K. Bohler, Y. Ding, W.M. Fawley, Y. Feng, E. Hemsing, Z. Huang, J. Krzywiński, A.A. Lutman, D.F. Ratner
    SLAC, Menlo Park, California, USA
 
  Measurements of the soft X-ray, self-seeding spectrum at the LCLS free-electron laser generally display a pedestal-like distribution around the central seeded wavelength that degrades the spectral purity. We have investigated the detailed experimental characteristics of this pedestal and found that it is comprised of two separate components: (1) normal SASE whose total strength is nominally insensitive to energy detuning and laser heater (LH) strength; (2) sideband-like emission whose strength positively correlates with that of the amplified seed and negatively with energy detuning and LH strength. We believe this latter, non-SASE component arises from comparatively long wavelength amplitude and phase modulations of the main seeded radiation line. Its shot-to-shot variability and LH sensitivity suggests an origin connected to growth of the longitudinal microbunching instability on the electron beam. Here, we present experimental results taken over a number of shifts that illustrate the above mentioned characteristics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP035  
About • paper received ※ 28 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP103 A Plasma Attenuator for Soft X-Rays in LCLS-II 553
 
  • A.S. Fisher, A.L. Benwell, Y. Feng, B.T. Jacobson
    SLAC, Menlo Park, California, USA
 
  Attenuation of X-ray FEL beams is often required to avoid damaging optics and detectors during alignment, and to study fluence-dependent effects. Soft X-rays are commonly attenuated by photoabsorption in a gas such as argon. However, absorbing a mJ pulse along a meter creates a pressure wave that drives gas away from the X-ray propagation axis, until equilibrium recovers in ~1 ms. This timescale matched the 120-Hz pulse spacing of LCLS, but at the high repetition rate (up to 1 MHz) and power (up to 200 W) of LCLS-II, the attenuation of subsequent pulses is reduced. Simulations demonstrate hysteresis and erratic attenuation from gas-density depletion. Instead, we propose to replace the gas column with an argon plasma in a TM010 RF cavity. The density profile then is largely set by the RF mode. X-ray absorption becomes a perturbation compared to the energy in the plasma. An LCLS-II solid-state RF amplifier, generating up to 4 kW at 1.3 GHz, can provide the drive, and the FPGA-based low-level RF controller can be programmed to track tuning with plasma density. Several diagnostics are planned to monitor plasma properties over a fill-pressure range of 10 to 1000 Pa.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP103  
About • paper received ※ 16 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)