Paper | Title | Page |
---|---|---|
TUP032 | Regenerative Amplification for a Hard X-Ray Free-Electron Laser | 118 |
|
||
Funding: This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515. An X-ray regenerative amplifier FEL (XRAFEL) utilizes an X-ray crystal cavity to provide optical feedback to the entrance of a high-gain undulator. An XRAFEL system leverages gain-guiding in the undulator to reduce the cavity alignment tolerances and targets the production of longitudinally coherent and high peak power and brightness X-ray pulses that could significantly enhance the performance of a standard single-pass SASE amplifier. The successful implementation of an X-ray cavity in the XRAFEL scheme requires the demonstration of X-ray optical components that can either satisfy large output coupling constraints or passively output a large fraction of the amplified coherent radiation. Here, we present new schemes to either actively Q-switch a diamond Bragg crystal through lattice constant manipulation or passively output couple a large fraction of the stored cavity radiation through controlled FEL microbunch rotation. A beamline design study, cavity stability analysis, and optimization will be presented illustrating the performance of potential XRAFEL configurations at LCLS-II/-HE using high-fidelity simulations. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP032 | |
About • | paper received ※ 24 August 2019 paper accepted ※ 26 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP035 | Sensitivity of LCLS Self-Seeded Pedestal Emission to Laser Heater Strength | 126 |
|
||
Measurements of the soft X-ray, self-seeding spectrum at the LCLS free-electron laser generally display a pedestal-like distribution around the central seeded wavelength that degrades the spectral purity. We have investigated the detailed experimental characteristics of this pedestal and found that it is comprised of two separate components: (1) normal SASE whose total strength is nominally insensitive to energy detuning and laser heater (LH) strength; (2) sideband-like emission whose strength positively correlates with that of the amplified seed and negatively with energy detuning and LH strength. We believe this latter, non-SASE component arises from comparatively long wavelength amplitude and phase modulations of the main seeded radiation line. Its shot-to-shot variability and LH sensitivity suggests an origin connected to growth of the longitudinal microbunching instability on the electron beam. Here, we present experimental results taken over a number of shifts that illustrate the above mentioned characteristics. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP035 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP043 | Multi-Energy Operation Analysis in a Superconducting Linac Based on off-Frequency Detune Method | 416 |
|
||
The free-electron laser facilities driven by a superconducting radio-frequency (SRF) linac provide high-repetition-rate electron beam, which makes it feasible to feed multiple undulator lines at the same time. In this paper, we study a method of controlling the beam energy of multiple electron bunches by off-frequency detuning of the SRF linac. Based on the theoretical analysis, we present the optimal solutions of the method and the strategy to allocate linac energy for each possible off-frequency detune. The initial acceleration phases before detuning of the SRF linac can be optimized to reduce the necessary SRF linac energy overhead. We adopt the LCLS-II-HE configuration as an example to discuss possible schemes for two undulator lines. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP043 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP035 | Beam Shaping for High-Repetition-Rate X-Ray FELs | 661 |
|
||
Beam shaping at normal-conducting, accelerator-based FELs, such as LCLS, plays an important role for improving lasing performance and for supporting special operating modes, such as the self-seeding scheme. Beam shaping methods include horn-collimation and dechirper manipulation. Applying the beam shaping concept to high-repetition-rate FELs driven by a superconducting linac, such as LCLS-II, beam invasive methods are not preferred due to concerns about high power deposition. We have recently studied a few shaping options for LCLS-II, such as manipulating the beam chirp before compression using corrugated devices, and modifying higher order optics terms in a chicane using octupoles. In this report we will discuss the results. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP035 | |
About • | paper received ※ 23 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP071 | Progress in High Power High Brightness Double Bunch Self-Seeding at LCLS-II | 726 |
|
||
Funding: Work supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515. We have previosuly shown that we can generate near TW, 15 fs duration, near transform limited X-ray pulses in the 4 to 8 keV photon energy range using the LCLS-II copper linac, two electron bunches, a 4-crystal monochromator/delay line and a fast transverse bunch kicker. The first bunch generates a strong seeding X-ray signal, and the second bunch, initially propagating off-axis, interacts with the seed in a tapered amplifier undulator, where it propagates on axis. In this paper, we investigate the design of the 4-crystal monochromator, acting also as an X-ray delay system, and of the fast kicker, in preparation of the implementation of the system in LCLS-II. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP071 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 26 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |