Author: Di Mitri, S.
Paper Title Page
MOA02 First Lasing of a Free Electron Laser in the Soft X-Ray Spectral Range with Echo Enabled Harmonic Generation 7
 
  • E. Allaria, A. Abrami, L. Badano, M. Bossi, N. Bruchon, F. Capotondi, D. Castronovo, M. Cautero, P. Cinquegrana, M. Coreno, I. Cudin, M.B. Danailov, G. De Ninno, A.A. Demidovich, S. Di Mitri, B. Diviacco, W.M. Fawley, M. Ferianis, L. Foglia, G. Gaio, F. Giacuzzo, L. Giannessi, S. Grulja, F. Iazzourene, G. Kurdi, M. Lonza, N. Mahne, M. Malvestuto, M. Manfredda, C. Masciovecchio, N.S. Mirian, I. Nikolov, G. Penco, E. Principi, L. Raimondi, P. Rebernik Ribič, R. Sauro, C. Scafuri, P. Sigalotti, S. Spampinati, C. Spezzani, L. Sturari, M. Svandrlik, M. Trovò, M. Veronese, D. Vivoda, M. Zaccaria, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • H.-H. Braun, E. Ferrari, E. Prat, S. Reiche
    PSI, Villigen PSI, Switzerland
  • N. Bruchon
    University of Trieste, Trieste, Italy
  • M. Coreno
    CNR-ISM, Trieste, Italy
  • M.-E. Couprie, A. Ghaith
    SOLEIL, Gif-sur-Yvette, France
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • C. Feng
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • F. Frassetto, L.P. Poletto
    LUXOR, Padova, Italy
  • D. Garzella
    CEA, Gif-sur-Yvette, France
  • V. Grattoni
    DESY, Hamburg, Germany
  • E. Hemsing
    SLAC, Menlo Park, California, USA
  • P. Miotti
    CNR-IFN, Padova, Italy
  • G. Penn
    LBNL, Berkeley, California, USA
  • M.A. Pop
    MAX IV Laboratory, Lund University, Lund, Sweden
  • E. Roussel
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
  • T. Tanikawa
    EuXFEL, Schenefeld, Germany
  • D. Xiang
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
 
  We report on the successful operation of a Free Electron Laser (FEL) in the Echo Enabled Harmonic Generation (EEHG) scheme at the FERMI facility at Sincrotrone Trieste. The experiment required a modification of the FEL-2 undulator line which, in normal operation, uses two stages of high-gain harmonic generation separated by a delay line. In addition to a new seed laser, the dispersion in the delay-line was increased, the second stage modulator changed and a new manipulator installed in the delay-line chicane hosting additional diagnostic components. With this modified setup we have demonstrated the first evidence of strong exponential gain in a free electron laser operated in EEHG mode at wavelengths as short as 5 nm.  
slides icon Slides MOA02 [5.133 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-MOA02  
About • paper received ※ 21 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUB04
Generation and Measurement of Intense Few-Femtosecond Superradiant Soft X-Ray Free Electron Laser Pulses  
 
  • S. Spampinati, E. Allaria, L. Badano, C. Callegari, G. De Ninno, M. Di Fraia, S. Di Mitri, L. Giannessi, N. Mahne, M. Manfredda, N.S. Mirian, G. Penco, O. Plekan, K.C. Prince, L. Raimondi, P. Rebernik Ribič, C. Spezzani, M. Trovò, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Feifel, R. Squibb
    Uppsala University, Uppsala, Sweden
  • T. Mazza
    EuXFEL, Hamburg, Germany
  • X. Yang
    BNL, Upton, New York, USA
 
  Intense FEL VUV and soft X-ray pulses with a time duration of few fs allows to probe ultrafast, out-of equilibrium dynamics or to pump the sample driving new phase transitions in regimes where uniform heating is not depleted by secondary energy decay channels, such as Auger effect [Principi]. Most of the methods proposed to reduce the FEL pulse duration are based on a manipulation of longitudinal electron beam properties such as emittance, beam current, energy spread, trajectory or optical functions. We present an attractive alternative based on the exploitation of the FEL dynamic process itself, driving the FEL amplifier in saturation and superradiance in a cascade of undulators resonant at higher harmonics of an initial seed. At FERMI we have implemented for the first time a multistage superradiant cascade reaching EUV-soft X-ray wavelengths and producing high-power, stable, FEL pulses with a duration of about 5 fs. We report here the analysis of the configuration used and of the characterization of the radiation produced in this regime.  
slides icon Slides TUB04 [3.300 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP010 Simple and Robust Free Electron Laser Doubler 609
 
  • S. Di Mitri, G. De Ninno, R. Fabris, S. Spampinati
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work has received funding by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 777431.
We present the design of a Free-Electron Laser (FEL) doubler suitable for the simultaneous operation of two FEL lines. The doubler relies on the physical selection of two longitudinal portions of an electron bunch at low energy, and on their spatial separation at high energy. Since the two electron beamlets are naturally synchronized, FEL pump-FEL probe experiments are enabled when the two photon pulses are sent to the same experimental station. The proposed solution offers improved flexibility of operation w.r.t. existing two-pulse, two-color FEL schemes, and allows for independent control of the color, timing, intensity and angle of incidence of the radiation pulses at the user end station. Detailed numerical simulations demonstrate its feasibility at the FERMI FEL facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP010  
About • paper received ※ 29 July 2019       paper accepted ※ 12 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP011 Experimental Benchmarking of Wakefields at the FERMI FEL Linac and Undulator Line 613
 
  • S. Di Mitri, L. Sturari
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C. Venier, R. Vescovo
    University of Trieste, Trieste, Italy
 
  Collective effects such as wakefields affect the dynamics of high brightness electron beams in linear accelerators (linacs), and can degrade the performance of short wavelength free-electron lasers (FELs). If a reliable model of wakefields is made available, the accelerator can be designed and configured with parameters that minimize their disrupting effect. In this work, the simulated effect of geometric (diffractive) wakefields and of coherent synchrotron radiation on the electron beam energy distribution at the FERMI FEL is benchmarked with measurements, so quantifying the accuracy of the model. Wakefields modelling is then extended to the undulator line, where particle tracking confirms the limited impact of the resistive wall wakefield on the lasing process. The study reveals an overall good understanding of collective effects in the facility [1].
[1] S. Di Mitri et al., Phys. Rev. Accel. and Beams, 22, 014401 (2019)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP011  
About • paper received ※ 29 July 2019       paper accepted ※ 25 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP012 Compact FEL-Driven Inverse Compton Scattering Gamma-Ray Source 617
 
  • M. Placidi, G. Penn
    LBNL, Berkeley, California, USA
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C. Pellegrini
    UCLA, Los Angeles, California, USA
  • C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scattering (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself.[1] This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. The same electron beam is used to produce gamma-rays in the 10-20 MeV range and UV radiation in the 10-15 eV range, in a ~4x22 m2 footprint system.
[1] M. Placidi et al., NIM A 855 (2017) 55-60.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP012  
About • paper received ※ 19 August 2019       paper accepted ※ 25 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP013 User Operation of Sub-Picosecond THz Coherent Transition Radiation Parasitic to a VUV FEL 621
 
  • S. Di Mitri, N. Adhlakha, E. Allaria, L. Badano, G. De Ninno, P. Di Pietro, G. Gaio, L. Giannessi, G. Penco, A. Perucchi, P. Rebernik Ribič, E. Roussel, S. Spampinati, C. Spezzani, M. Trovò, M. Veronese
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • S. Lupi
    Coherentia, Naples, Italy
  • S. Lupi
    Sapienza University of Rome, Roma, Italy
  • F. Piccirilli
    IOM-CNR, Trieste, Italy
  • E. Roussel
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • E. Roussel
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
 
  Coherent transition radiation is enhanced in intensity and extended in frequency spectral range by the electron beam manipulation in the beam dump beam line of the FERMI FEL, by exploiting the interplay of coherent synchrotron radiation instability and electron beam optics [1]. Experimental observations at the TeraFERMI beamline [2] confirm intensity peaks at around 1 THz and extending up to 8.5 THz, for up to 80 µJ pulse energy integrated over the full bandwidth. By virtue of its implementation in an FEL beam dump line, this work might stimulate the development of user-oriented multi-THz beamlines parasitic and self-synchronized to VUV and X-ray FELs.
[1] S. Di Mitri et al., Scientific Reports, 8, 11661 (2018).
[2] A. Perucchi et al., Synch. Rad. News 4, 30 (2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP013  
About • paper received ※ 29 July 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP078 Status of the CompactLight Design Study 738
 
  • G. D’Auria, S. Di Mitri, R.A. Rochow
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Aicheler
    HIP, University of Helsinki, Finland
  • A. Aksoy
    Ankara University Institute of Accelerator Technologies, Golbasi, Turkey
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, M. Croia, M. Diomede, M. Ferrario, A. Gallo, A. Giribono, L. Piersanti, J. Scifo, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • R. Apsimon, G. Burt, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.M. Arnesano, F. Bosco, L. Ficcadenti, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • A. Bernhard, J. Gethmann
    KIT, Karlsruhe, Germany
  • M. Calvi, T. Schmidt, K. Zhang
    PSI, Villigen PSI, Switzerland
  • H.M. Castañeda Cortés, J.A. Clarke, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.W. Cross, L. Zhang
    USTRAT/SUPA, Glasgow, United Kingdom
  • G. Dattoli, F. Nguyen, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • R.T. Dowd, D. Zhu
    AS - ANSTO, Clayton, Australia
  • D. Esperante Pereira, J. Fuster, D. Gonzalez-Iglesias
    IFIC, Valencia, Spain
  • W. Fang
    SINAP, Shanghai, People’s Republic of China
  • A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • E.N. Gazis, N. Gazis
    National Technical University of Athens, Zografou, Greece
  • R. Geometrante, M. Kokole
    KYMA, Trieste, Italy
  • B. Gimeno
    UVEG, Burjasot (Valencia), Spain
  • V.A. Goryashko, M. Jacewicz, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • R. Hoekstra
    ARCNL, Amsterdam, The Netherlands
  • X.J.A. Janssen, J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • A. Latina, X. Liu, C. Rossi, D. Schulte, S. Stapnes, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O.J. Luiten, P.H.A. Mutsaers, X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
  • J. Marcos, E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • Z. Nergiz
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • L.J.R. Nix
    University of Strathclyde, Glasgow, United Kingdom
  • E. Tanke, E. Trachnas
    ESS, Lund, Sweden
  • G. Taylor
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 777431.
CompactLight (XLS) is an International Collaboration of 24 partners and 5 third parties, funded by the European Union through the Horizon 2020 Research and Innovation Programme. The main goal of the project, which started in January 2018 with a duration of 36 months, is the design of an hard X-ray FEL facility beyond today’s state of the art, using the latest concepts for bright electron photo-injectors, high-gradient accelerating structures, and innovative short-period undulators. The specifications of the facility and the parameters of the future FEL are driven by the demands of potential users and the associated science cases. In this paper we will give an overview on the ongoing activities and the major results achieved until now.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP078  
About • paper received ※ 19 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP079 Status and Perspectives of the FERMI FEL Facility (2019) 742
 
  • L. Giannessi, E. Allaria, L. Badano, S. Bassanese, F. Bencivenga, C. Callegari, F. Capotondi, D. Castronovo, F. Cilento, P. Cinquegrana, M. Coreno, I. Cudin, G. D’Auria, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A.A. Demidovich, M. Di Fraia, S. Di Mitri, B. Diviacco, A. Fabris, R. Fabris, W.M. Fawley, M. Ferianis, L. Foglia, P. Furlan Radivo, G. Gaio, F. Gelmetti, F. Iazzourene, S. Krecic, G. Kurdi, M. Lonza, N. Mahne, M. Malvestuto, M. Manfredda, C. Masciovecchio, M. Milloch, R. Mincigrucci, N.S. Mirian, I. Nikolov, F.H. O’Shea, G. Penco, A. Perucchi, O. Plekan, M. Predonzani, K.C. Prince, E. Principi, L. Raimondi, P. Rebernik Ribič, F. Rossi, L. Rumiz, C. Scafuri, C. Serpico, N. Shafqat, P. Sigalotti, A. Simoncig, S. Spampinati, C. Spezzani, M. Svandrlik, M. Trovò, A. Vascotto, M. Veronese, R. Visintini, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  FERMI is the seeded Free Electron Laser (FEL) user facility at the Elettra laboratory in Trieste, operating in the VUV to EUV and soft X-rays spectral range; the radiation produced by the seeded FEL is characterized by wavelength stability, low temporal jitter and longitudinal coherence in the range 100-4 nm. During 2018 a dedicated experiment has shown the potential of the Echo Enabled Harmonic Generation (EEHG) scheme [1] to cover most of this spectral range with a single stage cascade [2]. Such a scheme, combined to an increment of the beam energy and of the accelerator performances, could extend the FERMI operating range toward the oxygen k-edge. With this perspective, we present the development plans under consideration for the next 3 to 5 years. These include an upgrade of the linac and of the existing FEL lines, consisting in the conversion of FEL-1 first, and FEL-2 successively, into EEHG seeded FELs.
[1] G. Stupakov, Phys. Rev. Lett. 102, 74801 (2009)
[2] P. Rebernik et al., Nature Photonics https://doi.org/10.1038/s41566-019-0427-1
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP079  
About • paper received ※ 28 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)