Paper | Title | Page |
---|---|---|
TUD04 | Cavity-Based Free-Electron Laser Research and Development: A Joint Argonne National Laboratory and SLAC National Laboratory Collaboration | 282 |
|
||
One solution for producing longitudinally coherent FEL pulses is to store and recirculate the output of an amplifier in an X-ray cavity so that the X-ray pulse can interact with following fresh electron bunches over many passes. The X-ray FEL oscillator (XFELO) and the X-ray regenerative amplifier FEL (XRAFEL) concepts use this technique and rely on the same fundamental ingredients to realize their full capability. Both schemes require a high repetition rate electron beam, an undulator to provide FEL gain, and an X-ray cavity to recirculate and monochromatize the radiation. The shared infrastructure, complementary performance characteristics, and potentially transformative FEL properties of the XFELO and XRAFEL have brought together a joint Argonne National Laboratory (ANL) and SLAC National Laboratory (SLAC) collaboration aimed at enabling these schemes at LCLS-II. We present plans to install a rectangular X-ray cavity in the LCLS-II undulator hall and perform experiments employing 2-bunch copper RF linac accelerated electron beams. This includes performing cavity ring-down measurements and 2-pass gain measurements for both the low-gain XFELO and the high-gain RAFEL schemes. | ||
![]() |
Slides TUD04 [12.425 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUD04 | |
About • | paper received ※ 25 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP051 | Generating Trains of Attosecond Pulses with a Free-Electron Laser | 692 |
|
||
Recently, a Hard X-ray Self-Seeding setup was commissioned at PAL XFEL. Its main purpose is to increase the temporal coherence of FEL radiation in an active way. We report another application of this setup to generate trains of short sub-femtosecond pulses with linked phases. We discuss preliminary results of both experiment and corresponding simulations as well as indirect diagnostics of the radiation properties. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP051 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP071 | Progress in High Power High Brightness Double Bunch Self-Seeding at LCLS-II | 726 |
|
||
Funding: Work supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515. We have previosuly shown that we can generate near TW, 15 fs duration, near transform limited X-ray pulses in the 4 to 8 keV photon energy range using the LCLS-II copper linac, two electron bunches, a 4-crystal monochromator/delay line and a fast transverse bunch kicker. The first bunch generates a strong seeding X-ray signal, and the second bunch, initially propagating off-axis, interacts with the seed in a tapered amplifier undulator, where it propagates on axis. In this paper, we investigate the design of the 4-crystal monochromator, acting also as an X-ray delay system, and of the fast kicker, in preparation of the implementation of the system in LCLS-II. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP071 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 26 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |