Author: Dang, D.K.
Paper Title Page
THP073 Status Update for the High Gain High Efficiency TESSA-266 Experiment 730
 
  • Y. Park, D.K. Dang, P.E. Denham, P. Musumeci, N.S. Sudar
    UCLA, Los Angeles, USA
  • R.B. Agustsson, T.J. Campese, I.I. Gadjev, A.Y. Murokh
    RadiaBeam, Marina del Rey, California, USA
  • C.C. Hall, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
  • Y. Sun, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: DOE grant No. DE-SC0009914 and DE-SC0018559
Tapering Enhanced Stimulated Superradiant Amplification (TESSA) allows to increase the efficiency of Free Electron Laser (FEL) based radiation generation from ~0.1% to 10% by using intense seed laser pulses, strongly tapered undulators and prebunched electron beams [1]. Initial results validating this method have already been obtained at 10 µm wavelength at Brookhaven National Laboratory [2]. We will present the design of an experiment to demonstrate the TESSA scheme at high gain and shorter wavelength (266 nm) using the APS injector linac at Argonne National Labor-atory (ANL) to obtain conversion efficiency of up to 10%. Undulator and focusing lattice design, as well as beam dynamics and diagnostics for this experiment will be discussed. An extension of the experiment to include the possibility of multi-bunch linac operation and an optical cavity around the undulator to operate in the TESSO regime will also be presented [3].
[1] J. Duris et al., New J. Phys. 17 063036 (2015)
[2] N Sudar et al., Physical review letters, 117, 174801 (2016)
[3] J. Duris et al., Physical Review Accelerators and Beams 21, 080705 (2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP073  
About • paper received ※ 20 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)