Author: Buaphad, P.
Paper Title Page
TUP065 Optimization of a Coherent Undulator Beamline for New Advanced Synchrotron Light Source in Korea 206
 
  • I.G. Jeong, P. Buaphad, Y.J. Joo, Y. Kim, H.R. Lee
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • P. Buaphad, Y.J. Joo, Y. Kim, H.R. Lee
    KAERI, Daejon, Republic of Korea
  • M.Y. Han, I.G. Jeong, J.Y. Lee, S.H. Lee
    Korea Atomic Energy Research Institute (KAERI), Daejeon, Republic of Korea
 
  Recently, the demand for a new advanced synchrotron light source in Korea is rapidly growing. Six local governments in Korea would like to host the new synchrotron light source project in their own provinces. The new advanced synchrotron light source will be the Diffraction-Limited Storage Ring (DLSR), which is based on the Multi-Bend Achromat (MBA) lattice. For the new synchrotron light source, we would like to build a special 60-m long coherent undulator beamline, which can deliver high-intensity coherent radiation at the hard X-ray region. To design the coherent undulator beamline, we have performed numerous beam dynamics simulations with GENESIS and SIMPLEX codes. In this paper, we report design concepts and those simulation results for the coherent undulator beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP065  
About • paper received ※ 26 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)