Paper |
Title |
Page |
TUP058 |
First Characterization of the Photon Beam at the European XFEL in July, 2017 |
180 |
|
- V. Balandin, B. Beutner, F. Brinker, W. Decking, M. Dohlus, L. Fröhlich, U. Jastrow, R. Kammering, T. Limberg, D. Nölle, M. Scholz, A.A. Sorokin, K.I. Tiedtke, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- U. Boesenberg, W. Freund, J. Grünert, A. Koch, N.G. Kujala, J. Liu, Th. Maltezopoulos, M. Messerschmidt, I. Petrov, L. Samoylova, H. Sinn
EuXFEL, Schenefeld, Germany
|
|
|
North branch of the European XFEL, SASE1, produced first light on May 3rd, 2017, and XFEL operation has been gradually improved then. First characterization of the photon beam has been performed in July / August 2017, just before an official starting date of user experiments (September 1st, 2017). Energy of the electron beam was 14 GeV, bunch charge was 500 pC, photon energy was 9.3 keV. With photon diagnostics available at that time (X-ray gas monitor (XGM) and FEL imager) we measured the gain curve and traced evolution of the FEL radiation mode along the undulator. An important conclusion is that experimental results demonstrate reasonable agreement with baseline parameters. Developed techniques of the photon beam characterization also provided solid base for identification of the problems and means for improving SASE FEL tuning and operation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-TUP058
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEP008 |
Multi-Beamline Operation at the European XFEL |
335 |
|
- L. Fröhlich, A. Aghababyan, V. Balandin, B. Beutner, F. Brinker, W. Decking, N. Golubeva, O. Hensler, Y. Janik, R. Kammering, H. Kay, T. Limberg, S. Liu, D. Nölle, F. Obier, M. Omet, M. Scholz, T. Wamsat, T. Wilksen, J. Wortmann
DESY, Hamburg, Germany
|
|
|
The European XFEL uses a unique beam distribution scheme to direct electron bunches to its three undulator lines. The accelerator delivers up to 600 microsecond long bunch trains, out of which parts or individual bunches can be selected for photon production in any of the FELs. This contribution gives a brief overview of the kicker-septum scheme facilitating this and highlights how even complex bunch patterns can easily be configured via the timing system.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-WEP008
|
|
About • |
paper received ※ 19 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|