The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.
TY - CONF AU - Yildirim, B. AU - Apostolov, E.M. AU - Choroba, S. AU - Katalev, V.V. AU - Morozov, P. AU - Nachtigal, Y. ED - Schaa, Volker R.W. ED - Decking, Winfried ED - Sinn, Harald ED - Geloni, Gianluca ED - Schreiber, Siegfried ED - Marx, Michaela TI - RF Power Waveguide Distribution for the RF Gun of the European XFEL at DESY J2 - Proc. of FEL2019, Hamburg, Germany, 26-30 August 2019 CY - Hamburg, Germany T2 - Free Electron Laser Conference T3 - 39 LA - english AB - The first section of the European XFEL provides the 43 m long injector. The injector consists of a 1.3 GHz RF gun, a 1.3 GHz cryomodule, a 3.9 GHz cryomodule and an extensive diagnostic section. The RF gun operates with a maximum RF peak power up to 6.5 MW, 10 Hz repetition rate and up to 650 µs pulse length. The starting point in the 1.5 cell normal conducting L-Band cavity of the RF gun is a Cs2Te photocathode, which produces electron bunches, which are injected into the superconducting accelerating section of the European XFEL. The RF power is generated by a 10 MW multi beam klystron and distributed to the RF gun through a RF power waveguide distribution system. In order to enhance the reliability of the distribution system, the peak power is minimized in every section of the system by splitting the power in different branches. The RF power reaches its maximum just in front of the RF gun after combination of all branches. An additional air pressure system decreases the break down level in the waveguides of the distribution. We present the layout of the waveguide distribution system for the XFEL RF gun at DESY and report on first operation experience. PB - JACoW Publishing CP - Geneva, Switzerland SP - 434 EP - 436 KW - GUI KW - gun KW - FEL KW - klystron KW - cryomodule DA - 2019/11 PY - 2019 SN - "" SN - 978-3-95450-210-3 DO - doi:10.18429/JACoW-FEL2019-WEP049 UR - http://jacow.org/fel2019/papers/wep049.pdf ER -