Present Status of SACLA, World's First Compact XFEL Facility

Hitoshi Tanaka

RIKEN SPring-8 Center

FEL2017@Santa Fe

3 FEL(2X+1SX) Beamlines Available

Progress of Facility Upgrade

FEL Performance at SACLA

	BL3	BL2	BL1
Max. Electron Energy (GeV)	8	8	0.8
Number of Undulators	21	18	3
Photon Energy (keV)	4~15	4~10	0.02~0.1
Intensity (mJ/pulse)	0.4~0.6	0.4~0.5	~0.1
Peak Power P (GW)	P > 30	P > 30	-
Repetition (Hz)	Max. 60	Max. 60	Max. 60
Pulse Width(fs; FWHM)	<< 10	<< 10	
Stability Intensity $\sigma_{\delta I/I}$ (%) Pointing $\sigma_{\delta z}/z(FWHM)$ (%) Wavelength $\sigma_{\delta \lambda}/\Delta \lambda(FWHM)$ (%)	<u><</u> 10 3 ~ 7 0.1	<u><</u> 10 3 ~ 7 0.1	10~20 - 0.3
Two Color SASE	Available	not yet	not yet

20

2

To SPring-8

BL2 BL3

Ċ

FEL20

2017/08/15

2017/08/15

017/8/21

Present Status of SCSS+(BL1)

2017/8/21

FEL2017@Santa Fe

Present Status of SCSS+(BL1)

Peak Current of ~300 A and slice emittance of ~0.5π µmrad expected2017/8/21FEL2017@Santa Fe9

Present Status of SCSS+(BL1)

Since September 2016 SX FEL has been available for user experiments in the wavelength range from 40 eV(30 nm) to 150 eV(8nm)

BL2/BL3 Pulse-by-Pulse Switching Operation Wavelength vs. Intensity

BL2/BL3 Pulse-by-Pulse Switching Operation Achieved Performance

BL2/BL3 Pulse-by-Pulse Switching Operation Achieved Performance

Horizontal orbit fluctuation measured before the BL2 undulator

Typical single-pulse spike spectra of XFEL at BL2 (left) and BL3 (right) in the multi-beamline operation

Relative photon energy (eV)

100 80 80 40 20 0 -2 -1 0 1 2 3 4 Relative photon energy (eV)

BL2/BL3 Pulse-by-Pulse Switching Operation Developed Systems

(1) 0.3 MW(300A, 1kV) bi-polar pattern pulse PS with 10 ppm current stability in a peak-to-peak value achieving stable XFEL switching over plural beamlines

C. Kondo, "High-precision pattern power supply of kicker magnet for multibeamline operation at SACLA", presented in IPAC2017@Copenhagen

(2) Pulse-by-pulse RF precise control enabling changes of "beam energy" in a shot-by-shot manner

T. Hara, "Time-interleaved multi-energy acceleration for an XFEL facility", PRSTAB 16, 080701 (2013)

(3) Dual phase-matched DBA based dogleg enabling a high peak current (around 10kA) operation by suppressing CSR effects on the beam degradation

T. Hara, "Suppression of the CSR effects at a dogleg beam transport using DBA lattice", presented in TUA of this conference

2017/8/21

FEL2017@Santa Fe

Future Upgrade

(1) Advanced beam switching and timing systems enabling arbitral pulse distributions over multi-beamlines and enabling on-demand "top-up" injection requests tor

(2) Nonlinear energy chirp correction at BL1 using a nonlinear magnet based correction scheme for higher laser pulse energy and shorter laser pulse width

complex

SACLA Linac

E=7 GeV Self-seeding scheme using a monochromator in reflection geometry y-pulse multi-energy (3) Self-seeding scheme using a micro channel-cut crystal Cceleration and switching

@Santa Fe

E=1.4 Gev