
Sven Reiche for SwissFEL Team :: Paul Scherrer Institut

First Lasing and commissioning status of SwissFEL

Free Electron Laser Conference, Santa Fe, 2017

SwissFEL in a nutshell

Aramis

Hard X-ray FEL, λ =0.1-0.7 nm

Linear polarization, variable gap, in-vacuum Undulators

First users 2018

Athos

Soft X-ray FEL, λ =0.65-5.0 nm

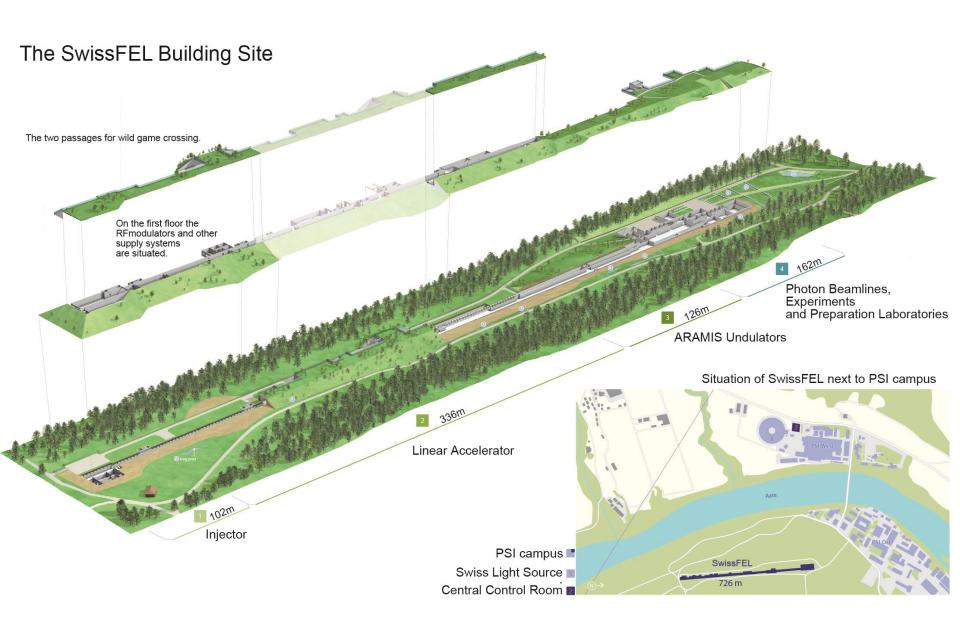
Variable polarization, Apple-X undulators

First users 2021

Main parameters

Wavelength from 1 Å - 50 Å

Photon energy 0.2-12 keV


Pulse duration 1 fs - 20 fs

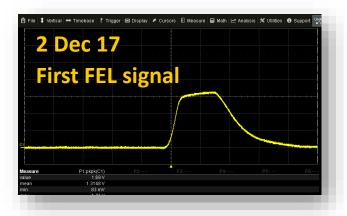
e⁻ Energy 5.8 GeV

e⁻ Bunch charge 10-200 pC

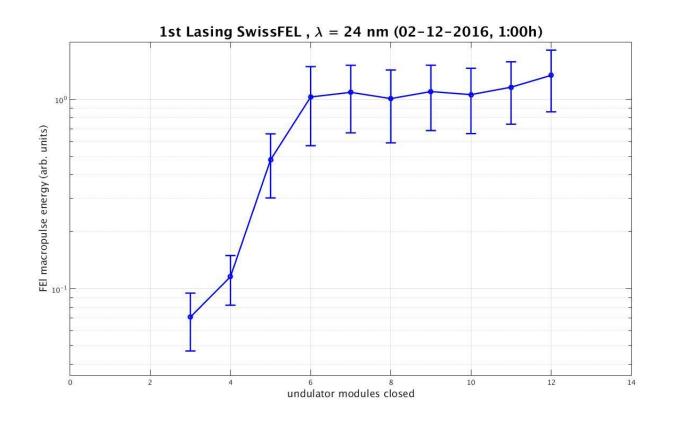
Repetition rate 100 Hz

2016, October 7

Aramis Beamline complete from Photo-injector to beam



Commissioning Progress in 2016


Date	achievement	
August 24	First free electrons from gun with 7.9MeV	
September 7	First electrons to injector beam dump	
September 8	First acceleration with one C-band module	
October 7	Accelerator line to main dump completed and under vacuum	
November 11	First beam transport through undulators to main dump	
December 2	First lasing at 345 MeV, 24 nm	
December 5	Inauguration ceremony & party	

First lasing at moderate wavelength on 2.12.2016

Obtained with only 345 MeV beam energy, signal measured with Si-Diode (half the injector RF + 1 main linac C-band RF station)
Mainly a systems test!

5.12.2016 SwissFEL, the Inauguration

Program 2017 & 2018

2017

Winter: Shutdown for installations

Spring: Increase beam energy up to 1 GeV

Summer: Injector Commissioning

Fall: Linac + Photonics commissioning

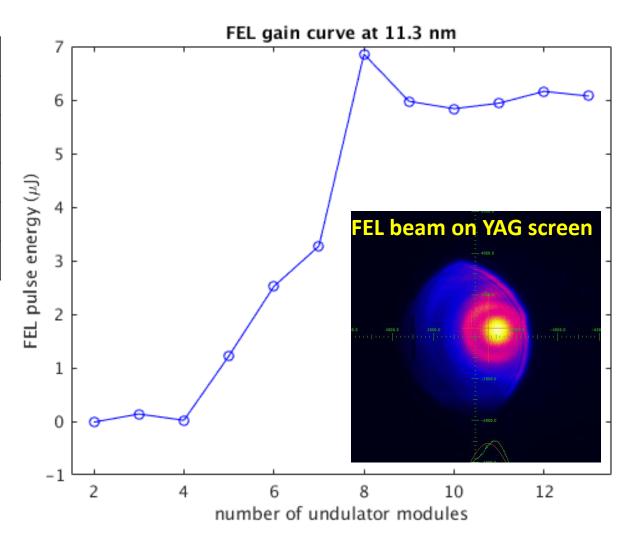
First pilot experiments at 2.3 keV

2018

Winter: Ramp-up beam energy to 5.8 GeV

Spring: Lasing & pilot experiments at 8 keV

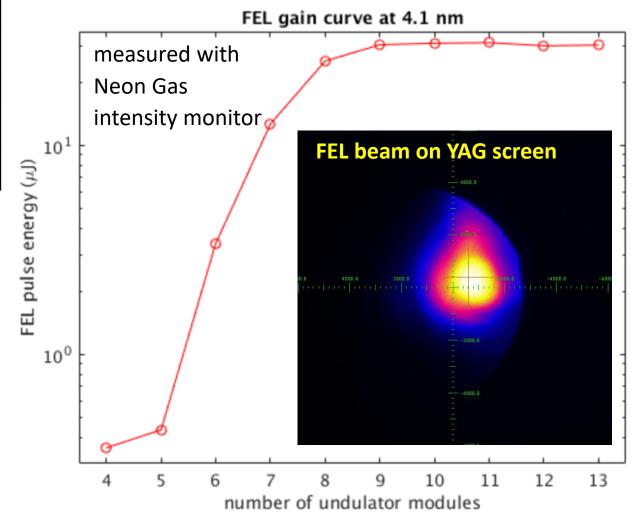
Summer: Lasing at 12 keV


Fall: Start of regular user operation

Commissioning progress May 14, 2017

Gain curve measured with Neon Gas intensity monitor

E _e -	0.545	GeV
$q_{\scriptscriptstyle B}$	145	рC
b.l. (rms)	≈0.4	ps
К	1.2	
$\lambda_{\scriptscriptstyle FEL}$	11.3	nm
W _{FEL (g.m.)}	≈7	μJ

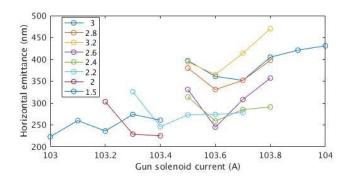


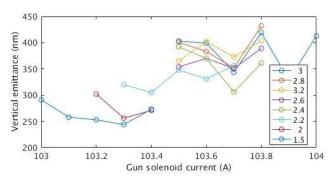
Commissioning progress May 15, 2017

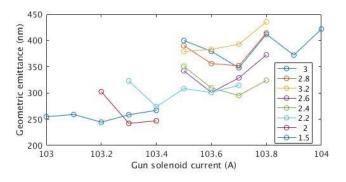
E _e -	0.91	GeV
$q_{\scriptscriptstyle B}$	145	pC
b.l. (rms)	≈0.4	ps
К	1.2	
$\lambda_{{\scriptscriptstyle FEL}}$	4.1	nm
W _{FEL}	≈30	μJ

Electron beam on main dump

First Lasing in nominal SwissFEL wavelength range (0.1-5.0 nm)!

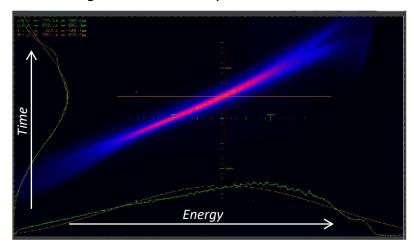

Establishing SASE at 4.1nm


- Time-consuming set-up of gun and cathode laser
- careful transverse optics measurement and matching in injector region
- computed optics in linac and undulators
- set-up of single stage bunch compression in BC1 with deflecting cavity
- steering according to BPM centers
- so far no special alignment procedures were required in undulator region
- measured pulse energy is consistent with theoretical expectations
- ⇒ We are positive that with the addition of more RF stations we can proceed to shorter wavelength.
- ⇒ Currently 8 out of 26 C-Band stations are being conditioned, one in operation
- ⇒ Many procedures semi-automatized
- ⇒ Emittance optimized and nominal compression achieved (see next slide)



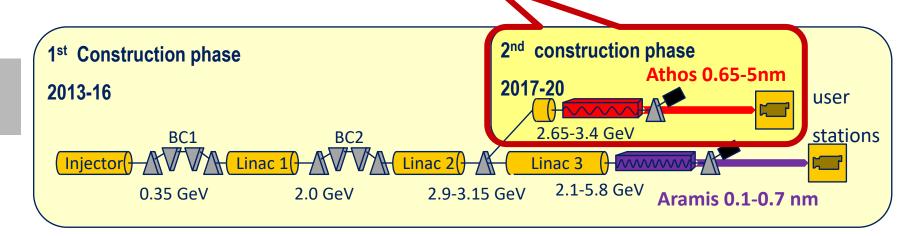
Status of Injector Commissioning

Emittance Optimization (uncompressed)



Single-Stage Compression

- BC settings precalculated and then optimized
- Compression down to 125 fs (nominal 200 fs)
- On-set of microbunch instability visible
- Coulomb explosion of head at high charges (200 pC)
- Can be mitigated with scraper in BC1

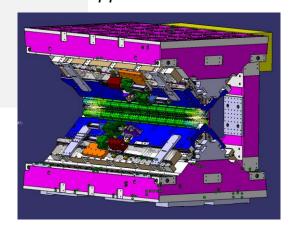

Longitudinal Phase Space Measurement

Emittance preservation after compression still to be demonstrated

Preparation for ATHOS

ATHOS

Soft X-ray FEL, λ =0.65-5.0 nm


full polarization control with U38 Apple-X Undulators

Switch Yard: already installed in phase 1

Extraction done at constant energy of 3 GeV

For more information, see Poster MOPO38 by R. Ganter

Apple X Undulator

- Lasing established at 4.1 nm without any major problems
- Injector commissioning near completion, beam energy up to 1 GeV
- Ramping up energy towards first user experiments in fall this year at 2.3 keV
- Next year: reaching 1 Angstrom (spring 2018) and start user operation (fall 2018)
- Start of Athos installation and commissioning of Athos in 2018

