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OUTLINE

• The Resonance Condition is obtained for an elliptical undulator

• The JJ-Factor is obtained in an elliptical undulator
• Measures the effect of the lower beat wave  degrades the

interaction
• Suppressed due to the symmetry of a helical undulator

• The JJ-factor varies smoothly: planar elliptical helical
• It is important to determine the JJ-factor in order to:

• Generalize the parameterization á la Ming Xie
• Parameterize orbit-averaged simulations

• Simulations are performed using an elliptical undulator model
• 1D simulations using PUFFIN
• 3D simulations using MINERVA
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THE RESONANCE CONDITION
• The orbits in a 1D elliptical undulator

• From energy conservation

• The Resonance Condition

Ellipticity
ue = 1: Helical Undulator
ue = 0: Planar Undulator
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• The electron position is given by

• We consider the interaction with an elliptically polarized wave
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• Based upon Poynting’s Theorem, we write
Lower Beat WaveUpper Beat (Ponderomtive) Wave

Vanishes when ue = 1 for a helical undulator

TO OBTAIN THE JJ-FACTOR
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• For the upper beat (ponderomotive) wave
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• For the lower beat wave
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ue = 0

Helical Undulator

Planar Undulator



THE JJ-FACTOR
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• As a result, the source term in Poynting’s theorem becomes

• Helical Undulator
Fixed Resonance Condition

KJJ 

• Planar Undulator
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SIMULATION CODES
• PUFFIN – 1D & 3D, time-dependent, unaveraged numerical

simulation code
• L.T. Campbell & B.W.J. McNeil, Phys. Plasmas 19, 093119

(2012)
• 1D simulation of elliptical undulator
• Results compared with orbit-averaged simulation using the

resonance condition and JJ-factor
• MINERVA – 3D, time-dependent, SVEA code with full 3D orbit

treatment (i.e., no wiggler-average)
• H. Freund, P. van der Slot, D. Grimminck, I. Setya, and P.

Falgari, New J. Phys. 19, 023020 (2017).
• Using an APPLE-II undulator model

• Neither code needs an explicit statement of either the resonance
condition or the JJ-factor since they are implicitly included in the
particle dynamics



APPLE-II UNDULATOR MODEL
We model an APPLE-II undulator using a super-position of two crossed
planar undulators with a relative phase shift f
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The ellipticity is given by:
1 cos
1 coseu f

f



1 cos
1 coseu f

f



0 /2f  

/2 f  



MINERVA SIMULATIONS
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Simulation
Generalized Ming Xie
Paramerterization

• MINERVA simulations for
SPARC-like parameters show a
decrease in the gain length and
increase in the saturation
distance with decreasing
ellipticity – as expected.

• MINERVA is in reasonable
agreement with the Ming Xie
formulae that have been
generalized to include the new
resonant wavelength and JJ-
factor.

H. Freund, P. van der Slot, D. Grimminck, I. Setya, and P. Falgari, New J. Phys. 19, 023020 (2017)



PUFFIN SIMULATIONS
• Comparison between PUFFIN

and the predicted scaling of
the saturation energy and
distance show good
agreement
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• Comparisons between PUFFIN
and the averaged simulation show
good agreement

• Saturation distance increases with
the ellipticity as expected and
seen in MINERVA

J.R. Henderson, L.T. Campbell, H.P. Freund, B.W.J. McNeil, New J. Phys. 18, 062003 (2016)



SUMMARY

• We have developed analytic formulae for the resonant wavelength
and the JJ-Factor
• Generalization of Ming Xie’s parameterization (MINERVA, 3D)
• Used in 1D orbit-averaged simulation (PUFFIN, 1D)

• PUFFIN and MINERVA simulations illustrate some essential features
associated with elliptical undulators
• Dependence of the resonance condition and interaction strength

on the undulator field strength

• This work represents a beginning in the theory and simulation of
elliptical polarization in FELs



SUPPLEMENTAL VIEWGRAPHS



THE PUFFIN SIMULATION CODE

• No slicing
• No period averaging
• Non-SVEA
• Neglects backwards wave, space-charge
• Models broadband emission
• Includes:

• variably polarized undulators, 
• variable undulator tunings,
• tapering, 
• beam energy oscillations, 
• Undulator lattices with chicanes and 

quads using point transforms

Full x and y–polarized fields:

Intensity evolution:



THE MINERVA SIMULATION CODE
• Fully 3-D with Time-Dependence
• E&M fields treated using the polychromatic SVEA approximation

• Multi-slice time-dependent and/or polychromatic physics
• Modal decomposition of the fields
• Amplifier (MOPA)/Oscillator (linked to OPC)/SASE/OK/HGHG

• Particle dynamics are treated from first principles (not KMR)
• Harmonics & sidebands implicitly included in orbit dynamics

• Additional Features/Capabilities
• Wiggler models

• Parabolic-Pole-Face, Flat-Pole-Face, Canted-Pole, Helical
• APPLE-II model describes planar, helical, elliptical symmetry
• Import from a field map

• Quadrupole & Dipole Field Models
• Non-Gaussian distributions (TBD)
• Import Phase Space
• Restart Capability


