

Accelerators in a new light

www.stfc.ac.uk

Optical Beam Quality Analysis of the Clara Test Facility using Second Moment Analysis

H. M. Castañeda Cortés¹, D.J. Dunning, M.D. Roper, N.L. Thompson

ASTeC, Cockcroft Institute, Science and Techonology Facilities Council,

Daresbury Laboratory, United Kingdom

¹hector.castaneda@stfc.ac.uk

Abstract

We studied and characterised the FEL optical radiation in simulations of the CLARA FEL test facility under development at Daresbury Laboratory in the UK [1]. **Table 2:** Undulator parameters for the preliminary study in last section and each proposed undulator module. There are 1.5 undulator periods (λ_u) end pieces for all cases, per end.

Parameter Previous Undulator module length study

IMPACT OF BEAM PARAMETERS

Electron beam scenarios

<u>Goal</u>: Study the impact of electron beam properties on optical beam quality.

- We determined the radiation source properties corresponding to the long bunch operation mode via wavefront propagation in free space using OPC (Optical Propagation Code), [2], and second noment analysis.
- We found the shortest undulator module length suitable for schemes to be carried out in CLARA, without degrading the beam quality.
- We studied the way that different properties of the electron bunches (emittance, peak current, bunch length) affect the optical beam.
- We are now able to understand how the optical beam will propagate from the end of the undulator and through the photon transport system to the experimental stations.

SECOND MOMENT ANALYSIS

Radiation source properties are found by fitting the evolution of the beam profile ($\sigma_i^2(z) = C_2 z^2 + C_1 z + C_0$) to the measured values of the second moments profile,[4]

With M^2 being beam quality coefficient, σ_{i_0} , rms size at the beam waist and z_0 the waist position.

	olday			
		0.5 m	0.75 m	1 m
λ_{u} (m)	0.0275	0.025	0.025	0.025
Active periods	28	17	27	37
Break sections (m)	0.4125	0.5	0.5	0.5
x/y quad. grad. (T/m)	8/10	13/13	10/10	9/9

<u>Goal</u>: Choose the undulator module length (proposed: 0.5, 0.75 and 1 m) with the highest beam quality (Minimum M² at maximum brightness).

Comparison of M^2 for different modules (Table 3)

- M² at maximum brightness for the 0.5 m module (in Table 3) has the largest M² of all modules (1.9 times larger than the M² obtained for the 0.75 m module in x and y). Not considered further as alternative.
- ▼ Fluctuation of $\Delta M_{x,y}^2 = |M_x^2 M_y^2|$, (in Fig. 1) around a non-zero value due to the difference in focusing of the electron beam for both transversal directions while traversing the FODO cell (asymmetry in beam quality).
- ▼ The 0.75 and 1 m modules have similar beam quality (relative difference between M² of both modules less than 1% in x and 3.1% in y). 0.75 m module chosen as it is compatible with proposed schemes without degrading beam quality.

Scenarios

- (A) Increased emittance bunch (0.8 mm-mrad).
- (B) Reduced quad strength (from 10 to 2 T/m, e-beam bigger in one plane).
- (C) Symmetric undulator focusing.
- (D) Bunch with double peak current and half the bunch length.

Table 4: Beam quality coefficient at n_{sec} corresponding to minimum M^2 and maximum brightness for all scenarios.

Scenario	Minimum M 2		Maximum Brightness		
	${\sf M}_x{}^2$	${\sf M}_y{}^2$	${\sf M}_x{}^2$	M_y^2	
Scenario (A)	3.61	3.34	4.65	3.86	
Scenario (B)	3.67	2.31	4.76	2.77	
Scenario (C)	3.54	3.57	4.41	4.11	
Scenario (D)	3.04	2.69	3.38	3.21	

CLARA LONG BUNCH MODE

○ E _{beam} 150-250 MeV.	○ E spread= 25 keV.
 Bunch charge 250 pC. 	$\circ \lambda_u = 2.5 \text{ cm.}$
$\circ \sigma_{t} = 800 fs.$	∘ λ <mark>r</mark> : 100 - 400 nm.
 Peak current 125 A. 	 Maximum rms (undu-
$\circ \overline{\epsilon} = 0.5$ mm-mrad.	lator parameter) = 1.4

PRELIMINARY STUDY

Table 1: Comparison between optical beam parametersobtained from steady state and time-dependent simula-tions

Slead	y state	Time-dependent		
X	У	Χ	У	
3.8	3.6	3.6	3.5	
-1.85	-1.93	-1.27	-1.27	
283	273	274	278	
	Stead X 3.8 -1.85 283	X Y 3.8 3.6 -1.85 -1.93 283 273	X Y X 3.8 3.6 3.6 -1.85 -1.93 -1.27 283 273 274	

Preliminary study

• Goal: Comparison between steady state and timedependent simulations in GENESIS 1.3 to demonstrate the validity of time-dependent approach for **Table 3:** Comparison between source properties at n_{sec}at maximum brightness for the proposed modules.

L (m)	M_x^{2}	M_y^{2}	$\mathbf{z}_{0_{\mathbf{x}}}$ (m)	$\mathbf{z}_{0_{\mathbf{y}}}$ (m)	$\sigma_{z_{0\mathbf{X}}}$	$\sigma_{z_{0\mathbf{y}}}$
					(μ m)	(μ m)
0.5	8.32	7.29	-1.99	-2.1	509	471
0.75	4.40	3.80	-1.41	-1.50	300	287
1	4.41	3.92	-1.86	-1.97	348	329

Figure 1: M^2 in x (top) and y (middle) and their difference $\Delta M_{x,y}^2 = M_x^2 - M_y^2$ (bottom) in terms of n_{sec} (for 0.5, 0.75 and 1 m modules).

Figure 3: Brightness as a function of n_{sec} (for the electron beam scenarios).

M² (Table 4) compared to 0.75 m module (Table 3)

Scenario (A): Degradation of beam quality compared to the nominal 0.75 m module (relative difference of M² in x around 5.7% and 1.5% in y).

- Scenario (B): Vast improvement of beam quality in y (relative difference compared to nominal 0.75 m module: 27%). Degradation in x (relative difference of 8.2% compared to the same nominal case).
- Scenario (C): No improvement of beam quality in either of the planes. Relative difference of 8% in y.
- Scenario (D): Minimum M² of all proposed cases. Improvement in beam quality in both tranversal planes (M² reduced to 0.77 and 0.84 of the nominal case in x and y, respectively).

Summary

♦ Three different module lengths (0.5, 0.75 and 1 m) were assessed to determine the impact of the undulator design on the beam quality.

beam quality calculations.

• λ_r = 266 nm

Results of the simulations (Table 1)

- M² parameters for the steady state and timedependent simulations are quite close to each other (relative difference of 5.2% and 2.8% in x and y, respectively.)
- The M² parameters in x and y are large compared to the ideal TEM₀₀ Gaussian mode propagating in free space (M² =1).

Figure 2: Brightness for the modules as a function of n_{sec} .

The 0.75 m undulator module was chosen, optimum for the different R&D topics proposed (mode-locking and HB SASE), without degrading the beam quality compared to longer modules.

References

[1] J. A. Clarke *et al.*, *JINST*, Vol. 9, pp. T05001, 2014.
[2] J. Karssenberg *et al.*, *J. App. Phys.*, Vol. 100, 093106, 2006; P.J.M. van der Slot, Proceedings of the Int. FEL Conference Conf. (FEL14), Basel, Switzerland, Aug. 2014, TUP021, pp. 412-415.

- [3] A.E. Siegman, DPSS Lasers: Applications and Issues, M. Dowley, ed., Vol. 17, paper MQ1, 1998.
- [4] M.D. Roper, *Nucl. Instrum. Methods A*, Vol. 635, pp. S80–S87, 2011.