Author: Zagorodnov, I.
Paper Title Page
MOP003 Concept for a Seeded FEL at FLASH2 34
 
  • C. Lechner, R.W. Aßmann, J. Bödewadt, M. Dohlus, N. Ekanayake, G. Feng, I. Hartl, T. Laarmann, T. Lang, L. Winkelmann, I. Zagorodnov
    DESY, Hamburg, Germany
  • A. Azima, M. Drescher, Th. Maltezopoulos, T. Plath, J. Roßbach, W. Wurth
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • S. Khan, T. Plath
    DELTA, Dortmund, Germany
 
  The free-electron laser (FEL) FLASH is a user facility delivering photon pulses down to 4 nm wavelength. Recently, the second FEL undulator beamline 'FLASH2' was added to the facility. Operating in self-amplified spontaneous emission (SASE) mode, the exponential amplification process is initiated by shot noise of the electron bunch resulting in photon pulses of limited temporal coherence. In seeded FELs, the FEL process is initiated by coherent seed radiation, improving the longitudinal coherence of the generated photon pulses. The conceptual design of a possible seeding option for the FLASH2 beamline envisages the installation of the hardware needed for high-gain harmonic generation (HGHG) seeding upstream of the already existing undulator system. In this contribution, we present the beamline design and numerical simulations of the seeded FEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP004 Longitudinal Phase Space Optimization for the Hard X-ray Self-Seeding 259
 
  • S. Liu, W. Decking, G. Feng, V. Kocharyan, I. Zagorodnov
    DESY, Hamburg, Germany
  • G. Geloni, S. Serkez
    XFEL. EU, Schenefeld, Germany
 
  For the implementation of Hard X-ray Self-Seeding (HXRSS) at European XFEL, short electron-beam bunches (FWHM ≤ 50 fs) are preferred to mitigate spatio-temperal coupling effect and to fit to the seeding bump width. Therefore, operations with low charges (< 250 pC) are preferred. Longitudinal phase-space optimization has been performed for the 100 pC case by flattening the current distribution. Start-to-end simulations show that, with the optimized distribution, for the photon energy of 14.4 keV, the HXRSS output power, pulse energy and spectral intensity can be increased by a factor of approximately 2 as compared to the nominal working point.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)