Author: Walker, N.
Paper Title Page
TUP002 Numerical Studies on RF-Induced Trajectory Variations at the European XFEL 251
 
  • T. Hellert, B. Beutner, W. Decking, N. Walker
    DESY, Hamburg, Germany
 
  At the European X-Ray Free-Electron Laser, superconducting TESLA-type cavities are used for acceleration of the driving electron bunches. Due to the high achievable duty cycle, a long radio frequency (RF) pulse structure can be provided, which allows to operate the machine with long bunch trains. The designated pointing stability of the FEL radiation places stringent restrictions on the acceptable trajectory variations of individual electron bunches. Therefore a transverse intra-bunch-train feedback system (IBFB) is located upstream of the undulator section. However, intra-bunch-train variations of RF parameters and misalignment of RF structures induce significant trajectory variations that may exceed the capability of the IBFB. In this paper we give an estimate of the expected RF-induced intra-bunch-train trajectory variations for different machine realizations and investigate methods for their limitation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)