Author: Urakawa, J.
Paper Title Page
MOP046 Progress of Delhi Light Source at IUAC, New Delhi 149
 
  • S. Ghosh, S. R. Abhilash, R.K. Bhandari, G.K. Chaudhari, V.J. Joshi, D. Kabiraj, D. Kanjilal, B. Karmakar, J. Karmakar, N. Kumar, S. Kumar, A. Pandey, P. Patra, G.O. Rodrigues, B.K. Sahu, A. Sharma, S. Tripathi
    IUAC, New Delhi, India
  • A. Aryshev, M.K. Fukuda, S. Fukuda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • U. Lehnert, P. Michel
    HZDR, Dresden, Germany
  • V. Naik, A. Roy
    VECC, Kolkata, India
  • T. Rao
    BNL, Upton, Long Island, New York, USA
  • M. Tischer
    DESY, Hamburg, Germany
 
  Funding: This project is jointly supported by Inter University Accelerator Center and Board of Research in Nuclear Science.
The first phase of the pre-bunched FEL based on the Photoinjector RF electron gun, known as Delhi Light Source (DLS),* has been planned at Inter University Accelerator Centre (IUAC), New Delhi. The electron gun made from OFHC copper had already been fabricated and tested with low power RF at KEK, Japan. The beam optics calculation by using ASTRA, GPT codes has been performed and radiation produced from the pre-bunched electron bunches are being calculated.** The high power RF systems will be commissioned at IUAC by the beginning of 2018. The design of the laser system is being finalized and assembly/testing of the complete laser system will be started soon at KEK. The initial design of the photocathode deposition mechanism has also been completed and its procurement/development process will start shortly. The first version of the undulator magnet design has been completed and further improvements are underway.*** The initial arrangements of the DLS beam line have been worked out and various beam diagnostics components are being finalised. The production of the electron beam and THz radiation is expected by 2018 and 2019, respectively.
* S. Ghosh et al., NIM-B, (2017) in press.
** V. Joshi et al., Proc. of this conference.
*** S. Tripathi et al., Proc. of this conference.
 
poster icon Poster MOP046 [1.598 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP066 Luminosity Increase in Laser-Compton Scattering by Crab Crossing 368
 
  • Y. Koshiba
    Waseda University, Tokyo, Japan
  • T. Higashiguchi
    Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Japan
  • S. Ota, T. Takahashi, M. Washio
    RISE, Tokyo, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: Research Fellow of Japan Society for the Promotion of Science
Laser-Compton Scattering X-ray (LCS-X) sources have been expected as compact and powerful sources, beyond X-ray tubes. They will enable laboratories and companies, opening new X-ray science. It is well known that luminosity depends on the collision angle of a laser and electron beam. Head-on collision is ideal in the point of maximizing the luminosity, though it is difficult to create such a system especially with an optical enhancement cavity for a laser. In collider experiments, however, crab crossing is a promising way to increase the luminosity. We are planning to apply crab crossing to LCS to achieve a higher luminosity leading to a more intense X-ray source. Electron beams will be tilted to half of the collision angle using an RF-deflector. Although crab crossing in Laser-Compton scattering has been already proposed, it has not been demonstrated yet anywhere.* The goal of this study is to experimentally prove the luminosity increase by adopting crab crossing. In this conference, we will report about our compact accelerator system at Waseda University, laser system favorable for crab crossing LCS, and expected results of crab crossing LCS.
* V. Alessandro, et al., "Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators." Physical Review Special Topics-Accelerators and Beams 14.3 (2011): 031001.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP067 Study on Cherenkov Laser Oscillator Using Tilted Electron Bunches 371
 
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M. Brameld, Y. Tadenuma, M. Washio, R. Yanagisawa
    Waseda University, Tokyo, Japan
  • R. Kuroda, Y. Taira
    AIST, Tsukuba, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by a research granted from The Murata Science Foundation and JSPS KAKENHI 26286083.
We have been studying a coherent Cherenkov radiation by using tilted electron bunches. Bunch tilting can enhance the radiation power about 10 times due to the wavefront matching of radiations. Recently, we investigated that this technique can produce high peak power THz pulses with sufficient pulse energy. Resulting pulse energy was more than 30 nJ/pulse and peak power was about 10 kW. Introducing the oscillator cavity with two concave mirrors, it would be possible to achieve lasing using tilted electron bunches. In the calculation, 1 uJ/micro-pulse and 100 uJ/macro-pulse broadband THz pulses are expected to be achieved, which are powerful THz sources compared with the existing THz FELs. In this conference, we will report the experimental results of coherent Cherenkov radiation, calculated results toward lasing and future prospectives.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)