Paper |
Title |
Page |
MOP031 |
First Operation of a Harmonic Lasing Self-Seeded FEL |
102 |
|
- E. Schneidmiller, B. Faatz, M. Kuhlmann, J. Rönsch-Schulenburg, S. Schreiber, M. Tischer, M.V. Yurkov
DESY, Hamburg, Germany
|
|
|
Harmonic lasing is a perspective mode of operation of X-ray FEL user facilities that allows it to provide brilliant beams of higher-energy photons for user experiments. Another useful application of harmonic lasing is so called Harmonic Lasing Self-Seeded Free Electron Laser (HLSS FEL), that allows it to improve spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper, we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with Self-Amplified Spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at a short wavelength paves the way for a variety of applications of this new operation mode in X-ray FELs.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2017-MOP031
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOP036 |
Frequency Doubling Mode of Operation of Free Electron Laser FLASH2 |
117 |
|
- M. Kuhlmann, E. Schneidmiller, M.V. Yurkov
DESY, Hamburg, Germany
|
|
|
We report on the results of the first operation of a frequency doubler at free electron laser FLASH2. The scheme uses the feature of the variable-gap undulator. The undulator is divided into two parts. The second part of the undulator is tuned to the double frequency of the first part. The amplification process in the first undulator part is stopped at the onset of the nonlinear regime, such that nonlinear higher-harmonic bunching in the electron beam density becomes pronouncing, but the radiation level is still small to disturb the electron beam significantly. The modulated electron beam enters the second part of the undulator and generates radiation at the second harmonic. A frequency doubler allows operation in a two-color mode and operation at shorter wavelengths with respect to standard SASE scheme. Tuning of the electron beam trajectory, phase shifters and compression allows tuning of intensities of the first and the second harmonic. The shortest wavelength of 3.1 nm (photon energy 400 eV) has been achieved with a frequency doubler scheme, which is significantly below the design value for the standard SASE option.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2017-MOP036
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|