Author: Garvey, T.
Paper Title Page
TUP053 The ACHIP Experimental Chambers at PSI 336
 
  • E. Ferrari, M. Bednarzik, S. Bettoni, S. Borrelli, H.-H. Braun, M. Calvi, Ch. David, M.M. Dehler, F. Frei, T. Garvey, V. Guzenko, N. Hiller, R. Ischebeck, C. Ozkan Loch, E. Prat, J. Raabe, S. Reiche, L. Rivkin, A. Romann, B. Sarafinov, V. Schlott, S. Susmita
    PSI, Villigen PSI, Switzerland
  • E. Ferrari, L. Rivkin
    EPFL, Lausanne, Switzerland
  • P. Hommelhoff
    University of Erlangen-Nuremberg, Erlangen, Germany
  • J.C. McNeur
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
 
  Funding: Gordon and Betty Moore Foundation
The Accelerator on a Chip International Program (ACHIP) is an international collaboration, funded by the Gordon and Betty Moore Foundation, whose goal is to demonstrate that a laser-driven accelerator on a chip can be integrated to fully build an accelerator based on dielectric structures. PSI will provide access to the high brightness electron beam of SwissFEL to test structures, approaches and methods towards achieving the final goal of the project. In this contribution, we will describe the two interaction chambers installed on SwissFEL to perform the proof-of-principle experiments. In particular, we will present the positioning system for the samples, the magnets needed to focus the beam to sub-micrometer dimensions and the diagnostics to measure beam properties at the interaction point.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB01
Characterization of High-Brightness Electron Beams at the Frontiers of Temporal and Spatial Resolution  
 
  • R. Tarkeshian, T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
  • T. Garvey, R. Ischebeck, E. Prat, S. Reiche, V. Schlott
    PSI, Villigen PSI, Switzerland
  • P. Krejcik
    SLAC, Menlo Park, California, USA
  • W. Leemans, R. Lehé, S. Steinke
    LBNL, Berkeley, California, USA
 
  We present two novel diagnostics to characterize high-brightness electron beams. The first technique, based on the tunnel ionization of a neutral gas by the intense (GV/m) self-field of the electron beam, can be used to measure the volumetric charge density of the beam, for example to reconstruct pulse durations shorter than few femtoseconds or to measure transverse beam sizes below the micron level. Experiments with sub-femtosecond unipolar self-field of electron beam, that approach the through-the-barrier tunneling times, could further deepen our understanding of quantum tunneling process. The second method can be used to streak electron beams with single cycle THz radiation concentrated in a micrometer gap of a resonant antenna, creating an enhanced electric near-field distribution. With this diagnostic one can measure with sub-femtosecond resolution the longitudinal duration, the slice emittance and energy spread of beams with energies up to tens of MeV. We show the validity of both methods with analytical calculations and particle-in-cell code simulations. We finally present practical implementation of both diagnostics at LCLS, in the XLEAP* experiment, and BELLA.
* X-Ray Laser Enhanced Altosecond Pulse Generation (XLEAP) For LCLS.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)