Author: Cesar, D.B.
Paper Title Page
TUP038 Experiments in Electron Beam Nanopatterning 320
 
  • C. Zhang, W.S. Graves, L.E. Malin, J. Spence
    Arizona State University, Tempe, USA
  • D.B. Cesar, J.M. Maxson, P. Musumeci, A. Urbanowicz
    UCLA, Los Angeles, USA
  • R.K. Li, E.A. Nanni, X. Shen, S.P. Weathersby, J. Yang
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by NSF Accelerator Science awards 1632780 and 1415583, NSF BioXFEL STC award 1231306, and DOE contracts DE-AC02-76SF00515 and DE-SC0009914.
We report on experiments in nanopatterning electron beams from a photoinjector as a first step toward a compact XFEL (CXFEL). The nanopatterning is produced by Bragg diffraction of relativistic electron beams through a patterned Si crystal consisting of alternating thick and thin strips to produce nanometer-scale electron density modulations. Multi-slice simulations show that the target can be oriented for a two-beam condition where nearly 80% of the elastically scattered electron beam is diffracted into the 220 Bragg peak. An experiment at the two-beam condition measurement has been carried out at the SLAC UED facility showing this effect with 2.26 MeV electrons. We successfully proved a large portion of the main beam is diffracted into 220 spot by tuning the orientation of the sample. Future plans at UCLA are to observe the nanopatterned beam, and to investigate various grating periods, crystal thicknesses, and sample orientations to maximize the contrast in the pattern and explore tuning the period of the modulation. The SLAC measurement results will be presented along with design of the UCLA experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)