Electro-Optic Longitudinal Bunch Profile Measurements at FLASH: Experiment, Simulation, and Validation

Bernd Steffen, DESY FEL 2007 Novosibirsk, August 29th 2007

Electro-Optic Bunch Length Detection

- Coulomb field of electron bunch induces birefringence in EO crystal.
- birefringence is sampled by Ti:Sa laser pulse.

The Electro-Optic Effect: Coulomb Field induced Birefringence

Effect of the half wave plate

Response function of the GaP crystal 0.25 d=65 µm 175 μm 0.2 300 µm [w/\d] [(J)] 0.05 0 5 10 20 15 0

FLASH Free-Electron Laser in Hamburg

frequency [THz] $G(f,d) = r_{41}(f) \frac{2}{1+n(f)+i\kappa(f)} \frac{1}{d} \int_0^d \exp\left[i2\pi f z \left(\frac{1}{v_{ph}(f)} - \frac{1}{v_g}\right)\right] dz$ EO coeff., transmission, velocity matching

Signal distortion esp. for thick crystals !

•

The simulation program

- Effective Coulomb pulse calculated from electron bunch profile and EO response function
- Phase retardation Γ from effective THz pulse
- Complex electric field of the modulated stretched laser pulse calculated according to:

$$E_{det}(\theta, \phi, \Gamma) = \begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \boldsymbol{H}(\theta) \cdot \boldsymbol{Q}(\phi) \cdot \boldsymbol{EO} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \boldsymbol{E}_{laser}$$

$$= \frac{E_{\text{laser}}}{\sqrt{2}} \left[\cos(2\theta) \sin(\Gamma/2) - \sin(2\phi - 2\theta) \cos(\Gamma/2) \right]$$

 $-i(\sin(2\theta)\cos(\Gamma/2) + \cos(2\phi - 2\theta)\sin(\Gamma/2))]$

Temporal and spectral intensity in both polarisations can be calculated.

Simulated EOTD signals of Gaussian THz pulses in 65 µm GaP

Bernd Steffen, FEL07, Novosibirsk, August 2007

FLASH Free-Electron Laser in Hamburg

FLASH Free-Electron Laser in Hamburg

in Hamburg

Bernd.Steffen@desy.de

Bunch length measurements using the transverse deflecting structure (TDS)

Bernd Steffen, FEL07, Novosibirsk, August 2007

Bernd.Steffen@desy.de

FLASH

in Hamburg

- Linear relationship between wavelength and long. position in laser pulse ("linear chirp")
- Bunch profile is transferred to spectral profile of the laser pulse
 - Problem: Frequency mixing with Coulomb field creates new frequency components:

 \Rightarrow Distortions at large chirp $\alpha \approx 1/\sqrt{\sigma_0 \sigma_c}$

 $\sigma_{\min} \approx 2.6 \sqrt{\sigma_0 \sigma_c} \approx 200 \, \text{fs}$ (for Gaussian pulses!)

FLASH Free-Electron Laser in Hamburg

Spectrally resolved detection: Comparison of measured to simulated Signals

FLASH

ree-Electron Laser

in Hamburg

Excellent agreement with simulation in shape and amplitude, but much wider than electron bunch due to response function and frequency mixing

EOSD: Distortions due to frequency mixing for thin crystal and large chirp

- Single shot cross-correlation with fs pulse in a frequency doubling crystal (BBO)
- approx. 100 µJ pulse energy necessary for 10 ps time window

EO Temporal Detection

Comparison of EOTD vs. TDS measurements

- 10th bunch in bunch train: electro-optic detection
- 11th bunch: TDS

Bernd Steffen, FEL07, Novosibirsk, August 2007

FLASH Free-Electron Laser in Hamburg

Comparison of EOTD vs. TDS measurements

FLASH Free-Electron Laser in Hamburg

Bernd.Steffen@desy.de

Good agreement
between measurement and simulation
close to the resolution limit of GaP

Signal due to wake fields?

Conclusions

- Benchmarked EO detection against TDS
- Simulations based on published material data are consistent in shape and amplitude with measured signals for GaP
- EOTD signals measured with of 55 fs (rms) length (linear in field and without deconvolution!) are close to the resolution limit of GaP

Thanks to

- G. Berden, A.F.G. van der Meer (FELIX)
- S. Jamison (ASTeC, Daresbury Laboratory)
- P.J. Phillips, W.A. Gillespie (University of Dundee)
- A.M. MacLeod (School of Computing and Advanced Technologies, University of Abertay, Dundee)

 V. Arsov, E.-A. Knabbe, H. Schlarb, B. Schmidt, P. Schmüser (DESY)