

Performance Tests of the Photon Monochromator for Self-Seeding at FLASH

Rolf Treusch

HASYLAB @ DESY

Introduction

Different seeding schemes have been elaborated at DESY (Saldin, Schneidmiller, Yurkov et al.)

Seeding schemes aim to obtain either

- full longitudinal coherence
- short pulses (→ few 10 femtoseconds at FLASH, or even attosecond regime for X-rays around 1Å)

• higher harmonics (VUV \rightarrow X-rays)

DES

Why Self-Seeding?

A SASE FEL is a brilliant source of radiation with a high degree of transverse coherence but limited longitudinal coherence due to startup from noise.

"Spikes" in time and frequency domain are causing problems for some experiments
→ Self-Seeding is the cure

Idea: seed a SASE FEL with a fully longitudinally coherent, narrow bandwidth laser pulse

Approach: no sufficiently intense table top lasers available in the VUV and soft X-ray region

→ use monochromatized radiation from another SASE FEL as a seed

J. Feldhaus, E.L. Saldin, J.R. Schneider, E.A. Schneidmiller, and M.V. Yurkov, Opt. Comm. 140, 341 (1997) **Rolf Treusch, DESY-FS**

DESY

Self-Seeding Principle

Spectral power distribution

- 1:1 imaging of complex conjugated wavefront onto entrance of 2nd undulator
- monochromator resolution ≤ 20000
- overall efficiency 10%
- match pathlength of e-bypass
 - optimum longitudinal and transverse overlap with electron bunch in 2nd undulator
 - monochromatized seed pulse dominates shot noise and is amplified to saturation
 - output FEL beam possesses full longitudinal coherence and narrow bandwidth (Δλ/λ ≈10⁻⁴)

Total length: 22m

slit

elements

slit

Results from photon monochromator tests at ASTRID (ISA, Aarhus, DK)

- monochromator (from M1 up to exit slit + gas cell behind) set up at bending magnet at ASTRID storage ring
- all vacuum chambers and mechanical systems (including Monochromator !) were made at IFA&ISA, Univ. Aarhus
- all mechanics succesfully tested in the lab
- monochromator performance (accuracy and in particular resolution) tested with beam on all three gratings with rare gas resonances (in particular He)

branch with M4 & M5 not used during tests, just assembled!

Rolf Treusch, DESY-FS

DES

FEL-07 Novosibirsk, 29.08.2007

Monochromator mechanics

Rolf Treusch, DESY-FS

DESY

View onto triple grating in monochromator

View onto triple grating in monochromator

DESY

Beam on entrance slit

FEL-07 Novosibirsk, 29.08.2007

Beam on grating

DESY

Results: resonance spectra

1) He ¹P⁰ double-excitation states around 60eV

DES

Helium ¹P⁰: zoom onto n=7+ to continuum high energy grating (HEG)

Changing from MEG to HEG, energies were only 13 meV (0.2‰) off !!

$\textbf{Kr 3d} \rightarrow \textbf{np, HEG}$

Coming from calibrated MEG, energies were only 40 meV (0.45‰) off !!

DESY

Ar 3p \rightarrow ns,nd, HEG

Coming from calibrated MEG, energies were only 123 meV (0.5‰) off !!

HELMHOLTZ

ASSOCIATION

Resolving Power

Energy [eV]	Gas	LEG	MEG	HEG
~24	Не	~ 8000 [8000] (3 meV)		
60-65	Не	~ 5000 [5000] (13meV)	11000 - 16000 [15000] (4-6meV)	16000 - 22000 [22000] (3-4meV)
91-95	Kr			≥ 4000 (≤ 25/60 meV) conservative
244-250	Ar			estimate, limited by natural linewidth and data quality

blue: 40 micron slits, red: 20 micron slits, []: ray tracing values

Summary

- Self-Seeding will deliver FEL beam with almost full coherence, both transverse <u>and</u> longitudinal
- Narrow bandwidth → ≈ 50x higher peak brilliance with pulse energies comparable to usual SASE FEL
- Wavelength range at FLASH from about 60 6.4 nm
- Jitter free synchronization between seed pulse and electron bunch
- Monochromator performs according to specs !

Acknowledgements

Ulrich Hahn, Rolf Treusch and Jens Viefhaus,

Rolf Follath, Gerd Reichardt, Friedmar Senf, Frank Siewert,

Ruben Reininger

Special thanks for perfect support:

ISA/IFA workshops DESY/HASYLAB Exp.Control and Vacuum Groups

Supplementary Transparencies

- some dispersion needed to remove the microbunching, but avoid too large increase of total bunch length
- minimize deterioration of beam quality caused by coherent synchrotron radiation (CSR) in the dipoles (tolerable limit of about 10 % growth of the slice emittance)
- small central "tuning bypass" to vary the electron beam pathlength by about 1 mm is necessary to cope with the changes in photon beam pathlength introduced by changing the monochromator energy

Final Layout

Electron Bypass :

11 steerers, 8 dipoles, 8 quadrupoles (vert. foc.), 6 quadrupoles (hor. foc.), 4 sextupoles 37 magnets total

Photon Monochromator Beamline :

DESY

Mirror M2 in holder

Accuracy of grating/premirror drive

Locally (within few eV) energy scale error up to ~ 1% (some 10 meV), but globally better than 0.5‰, even upon grating change! Can/will be improved but is not crucial since we will use feedback from Heidenhain rotary encoders (RON 905 UHV, accuracy +/- 0.2", can be even interpolated to better accuracy) DESY

Helium ¹P⁰: zoom onto n=7+ to continuum, medium energy grating (MEG)

Rolf Treusch, DESY-FS

DESY

Helium I around 24 eV, low energy grating (LEG)

Rolf Treusch, DESY-FS

DESY

Photon Energy (eV)

■,■: measurements

□,□: ray-tracing results (R.Reininger)