

... for a brighter future

UChicago Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

A Compact Electron Spectrometer for an LWFA and Other Challenges

Alex H. Lumpkin^{*}, Rob Crowell, Yuelin Li, and Karoly Nemeth Argonne Accelerator Institute Argonne National Laboratory Presented at FEL07, Novosibirsk, Russia August 29, 2007

*Guest Scientist at Fermilab

OUTLINE

Introduction

- Laser Wakefield Accelerator (LWFA) background
- Compact Electron Spectrometer Design
- Experimental and Analytical Results
- Challenges of FELS for the LWFA
- Summary

Terawatt Ultrafast High Field Facility (TUHFF)

 Ti:Sapphire oscillator with three amplifiers used.

TUHFF Laser Output

30fs, 0.6 J (20 TW) @ 10 Hz

Alex H. Lumpkin

Acknowledgments

Radiation Chemistry GroupEli ShkrobSergey ChemerisovChuck JonahBob LowersChris EllesTim MarinAlex LumpkinOleg Korovanko - CoherentRoberto Rey-Castro - PrincetonRui Lian – CoherentDmitri Oulianov - Spectra

Collaborators

Yuelin Li (APS) Dohn Arms (APS) Wei Gai (HEP) John Powers (HEP) Bill Gropp (MCS) Jin Wang (APS) Yong Chul Chae (XFD) Bob Soliday (XFD) Eric Landahl (APS) Don Walco (APS) Lynne Soderholm (CHM) Ronato Chiarizia (CHM)

Dave Bartels (NDRL) X) Prof. Steve Bradforth (USC) Prof. Don Umstadter (U. Mich./Nebraska) Prof. Christoph Rose-Petruck (Brown) Prof. John Cary (U. Colorado, Tech-

Stanislas Pommeret (CEA/Saclay)

Alex H. Lumpkin

Compact Electron Spectrometer Components Evaluated*

- Two NdFeB magnets
- Lanex converter screen (LOA)
- Roper 16-bit ICCD camera

- APS Magnet lab
- previous studies LOA
- S35 Optics lab

Bergoz ICT
Electronics lab

*Based On Y. Glinec et al. Design, LOA

Alex H. Lumpkin

Permanent Magnets Used in Compact Spectrometer Characterized in APS Magnet Measurement Lab

NdFeB magnets are Assembly with 12-5 x 2.5 x 1.2 cm³ mm gap measured

Alex H. Lumpkin

16-bit Camera Characterized in APS S35 Optics Lab

Roper Scientific Camera tested

Working Distance	Calibration factor	FOV
(cm)	(um/pixel)	
14	13.7	1.4
17.3	19.6	2.0
29	36.9	3.8
40	50.0	5.1
50	62.5	6.3
60	74	7.6
70	89.3	9.1

15-um Diam pinhole used for test source.

Alex H. Lumpkin

FEL07 Technology I

ICT Tested in Lab with Calibration Loop

Bergoz ICT Data (2-28-07)

Alex H. Lumpkin

FEL07 Technology I

Schematic of the Compact Spectrometer Setup

Alex H. Lumpkin

FEL07 Technology I

Electron Beam Parameters:

Argonne

Alex H. Lumpkin

FEL07 Technology I

Simulation of laser plasma interaction and the bubble regime

Goal and means

- Support the femto chemistry experiment by mapping the laser and plasma condition for optimum beam generation
- Support advanced accelerator research by investigating the laser plasma accelerator physics
- Using 3-D PIC code VORPAL with several computer clusters at ANL

Topics

- Plasma and laser condition for femto chemistry
- Bubble regime laser plasma physics
- Injection of electron in the bubble regime: laser injection and nano wire trigger of wave breaking
- Beam properties: structure, propagation, and radiation
- Data visualization

Laser plasma bubble

Alex H. Lumpkin

Laser Modulation of the Beam Structure in the Bubble

Laser modulation of the beam structure in the bubble

Beam modulation in the bubble

Courtesy of Yuelin Li

Micro bunching of the output beam

Alex H. Lumpkin

FEL07 Technology I

Towards sub-ps Electron Beams

S.P.D. Mangles et al. Nature 431, 535 (2004) RAL C.G.R. Geddes et al. Nature 431, 538 (2004) LBNL J. Faure et al. Nature 431, 541 (2004) LOA Estimated τ~ 10 fs Low divergence

Physics is very complicated and must be understood to optimize LWFA For reliable quasi-monochromatic electron beam generation

Alex H. Lumpkin

LOA Experiments Show Quasi-monoenergetic Beams with Beat-Wave Injection Technique

Alex H. Lumpkin

FEL07 Technology I

August 29, 2007

15

Injection Technique Provides More Reproducible Performance and Energy Tuning

20-shot statistics tabulated.

Table 1: Statistics of the electron beam parameters over 20 shots.

<peak energy="">*</peak>	σ _{Reakenergy}	<energy spread=""></energy>	$\sigma_{\text{Energy spread}}$
117 MeV	7 MeV	11 % (FWHM)	2 %
<charge></charge>	σ _{Charge}	<divergence fwhm=""></divergence>	$\sigma_{\text{Basim pointing}}$
19 pC	6.8 pC	5.8 mrad	1.8 mrad

*<X> refers to the mean value of X and σ_X to the standard deviation of X.

Energy tuning by adjustment of injection timing.

J.Faure et al., Nature, 2006

Alex H. Lumpkin

LBNL LOASIS Experiments Attain 1 GeV

Courtesy of V. Malka

Alex H. Lumpkin

FEL07 Technology I

August 29, 2007

17

TUHFF as an Ultrafast x-ray/VUV Source

X-ray absorption, scattering studies of solvent structure and dynamics

VUV (1-photon) probing of excited states

SUMMARY

- The ANL LWFA is preparing for quasi-monoenergetic beam generation tests in CY07.
- Rapid progress in the LWFA community on generating higher charge and more controllable beams by using some form of electron injection process has occurred.
- Charge, energy spread, and beam emittance are still challenges that need addressing to move from an LWFA beam driving spontaneous radiation to FEL. First spontaneous results recently at Jena. Like to see e-beams so well defined that OTR techniques apply with standard camera.
- The next LWFA community target is to generate a 10-GeV beam by the AAC08 meeting in July 2008.
- Plans at LBNL and LOA for FEL experiments soon.

19

ACKNOWLEDGMENTS

- We acknowledge assistance on tests for magnet measurements by Isaac Vasserman, camera tests with Bingxin Yang and John Power, ICT tests with A. Brill and T. Pietryla of ASD/APS/ANL.
- The loan of the Roper Scientific 16-bit camera and Bergoz ICT by AWA staff is noted and appreciated.
- The support of Kwang-Je Kim, Rod Gerig, and Harry Weerts of the Argonne Accelerator Institute is acknowledged.

