

Stanford Synchrotron Radiation Laboratory

LCLS Injector Commissioning Results

David H. Dowell Stanford Linear Accelerator Center (on Behalf of the LCLS Commissioning Team)

2007 Free Electron Laser Conference Novosibirsk, Russia

Description of LCLS and Its Injector

Commissioning Milestones

- The Drive Laser & Cathode
- Electron Beam Measurements

Unexpected Physics

Summary of Results and Conclusions

2007 FEL Conference LCLS Injector Commissioning

Stanford Synchrotron Radiation Laboratory

The LCLS will use the last 1/3 of the SLAC linac to create an x-ray FEL

2007 FEL Conference LCLS Injector Commissioning

2

LCLS Design Parameters

Fundamental FEL Wavelength	1.5	15	Å
Electron Beam Energy	13.6	4.3	GeV
Normalized Slice Emittance (rms)	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
Energy Spread (slice rms)	0.01	0.03	%
Bunch/Pulse Length (FWHM)	≤ 200	≤ 200	fs
Saturation Length	87	25	m
FEL Fundamental Power @ Saturation	8	17	GW
FEL Photons per Pulse	1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *
* photons/sec/mm²/mrad²/ 0.1%-BW			

LCLS Accelerator & Compressor Systems

Injector and Bunch Compressor 1 Commissioned from April to September 2007 ~5 Months

2007 FEL Conference

Commissioning Milestones

- **Spring 2006: Civil construction of buildings/shielding completed**
- Summer 2006: Drive Laser Installed
- Oct-Nov 1006: Gun1 high power conditioning in Klystron Lab
- Fall 2006-Spring 2007: Drive laser commissioned, optics installed
- Spring 2007: Injector & BC1 beamline installed
- March 16, 2007: RF gun installed & RF processing started
- April 5, 2007: First Photo-electrons
- April 9, 2007: E-beam to 135 MeV
- April 16, 2007: E-beam to 250 MeV & compressed in BC1
- June 24, 2007: E-Beam to 15 GeV (200pC)
- July 24, 2007: E-Beam studies at 1 nC
- July 26, 2007: E-Beam at 1nC to 15 GeV
- August 8, 2007: Compressed 1 nC e-beam to 15 GeV
- August 2007: Injector Meets LCLS Requirements

Stanford Synchrotron Radiation Laboratory

dowell@slac.stanford.edu

Thales Drive Laser System

Stanford Synchrotron Radiation Laboratory

3D RF Design of Gun

- Z-coupling:
 - reduces pulsed heating
 - increases vacuum pumping
- Racetrack to minimize quadrupole fields
- Deformation tuning to eliminate field emission from tuners
- Iris reshaped, reduces field 10% below cathode
- Increased 0-π mode separation to 15MHz
- All 3D features included in modeling:
 - Iaser port and pickup probes
 - **3D fields used in Parmela simulation**

RF Parameters	
f _π (GHz)	2.855987
Q0	13960
β	2.1
Mode Sep. ⊿f (MHz)	15
E0:E1	0.999:1

C. Limborg et al., "RF Design of the LCLS Gun", LCLS-TN-05-3

L. Xiao et al., "Dual feed rf gun design for the LCLS," Proc. 2005 Particle Acc. Conf.

Slide Compliments of Z. Li & L. Xiao

LCLS Injector Commissioning

-0.008

Stanford Synchrotron Radiation Laboratory

March 16: Gun-Solenoid Assembly Installed at Sector 20!

2007 FEL Conference LCLS Injector Commissioning

9

LCLS Injector Commissioning

dowell@slac.stanford.edu

Laser reliability is very good: Up-time > 90%
Excellent support from Thales & Femtolasers
Delivering > 400 microJoules to cathode (250 is spec)
Shaping needs work, but still producing good emittances

•Excellent energy stability (1.1%)

•Position stability on cathode, ~10-20 microns.

X-Correlator Measurement of Laser Pulse

1.1% charge stability at 1nC, 2% is spec

Laser stability vs. time

STEP VARIABLE = TIME STEPS=500 DELAY=.10000

A VERAGE

6 1280F±00

9-AUG-07 22:33:36

2007 FEL Conference LCLS Injector Commissioning

11

Stanford Synchrotron Radiation Laboratory

Cathode Uniformity:

Comparison of White Light & Electron Emission Images

June 6, 2007 White light cathode image

June 2, 2007 Electron beam image of cathode @ ~9pC

•Emission is very non-uniform on the 10-micron scale •Perform ~weekly inspection of the cathode surface

2007 FEL Conference

LCLS Injector Commissioning

Stanford Synchrotron Radiation Laboratory Cathode QE and Uniformity

LCLS Injector Commissioning

David H. Dowell et al. dowell@slac.stanford.edu

08-16-07

Stanford Synchrotron Radiation Laboratory

Projected & Slice Emittances at 1nC

Projected Emittance (rms) at 1nC (95% of the beam): $\varepsilon_x = 1.14$ microns $\varepsilon_y = 1.06$ microns Slice Emittance, Current & Matching: Slices 3 to 7 (tail) are all below 1 micron. Head slices (8-10) are > 1 micron. Peak Current is 100 amps.

On-line analysis tools by H. Loos

2007 FEL Conference

Stanford Synchrotron Radiation Laboratory

Comparison with Simulations

Measured emittance depends upon truncation of tails. Experimental analysis truncates 5% of the base area of the images. Therefore emittances are for 95% of the beam agreeing with similar analysis of simulations.

 $\varepsilon_{thermal} = 0.6 \text{ micron / } mm = 0.6 \text{ mrad (normalized divergence)}$

See C. Limborg-Deprey et al., Poster TUPPH019

2007 FEL Conference

Stanford Synchrotron Radiation Laboratory

Transverse Cavity (RF-Deflector) Measurements of Bunch Length

2007 FEL Conference

LCLS Injector Commissioning

16

Linearization of Longitudinal Phase Space Measured Using the RF Deflector & OTR Screen in Center of BC1

2007 FEL Conference

Bunch Length Measurements at 135MeV & 15GeV

2007 FEL Conference

LCLS Injector Commissioning

Stanford Synchrotron Radiation Laboratory

BC1 Edge Radiation Bunch Length Monitor

Coherent Radiation Sources from Bend

Edge Radiation Simulation

Bunch length after BC1: 60 – 200 µm Wavelength range to determine bunch length: 0.3 – 1 mm Measure integrated coherent power and use frequency filters

Measurement Layout

Slide and data compliments H. Loos

David H. Dowell et al.

dowell@slac.stanford.edu

Stanford

inear

Accelerato

2007 FEL Conference

Stanford

Accelerato

Linear

David H. Dowell et al.

dowell@slac.stanford.edu

Stanford Synchrotron Radiation Laboratory

Unexpected Physics! Strong Optical Microbunching with BC1 Set to Maximum Compression

Generation of COTR in the Visible Spectrum Indicates Microbunching & Interferes with Using OTR Profiles for Emittance Measurements.

Comparison of Bunch Length Monitor & OTR Signals OTR Images Fluctuate from Shot-to-Shot & Can Even Produce "Ring-Like" Shapes!

2007 FEL Conference

Unexpected Physics! Coherent Optical Transition Radiation after DL1 Bend Even With No BC1 Compression

2007 FEL Conference

LCLS Injector Commissioning

21

BC1 Chicane Emittance Growth

Best $\gamma \varepsilon_x$ after BC1 with nom. (& more) compression is 1.6 μ m (& larger)

Poor bend field quality (grad. + sext.) – $\Delta E/E$ scan shows 1st & 2nd-order η

- Screen image biased by COTR wires vibrate variable results (& in y)
- Bends will be upgraded in fall '07 + proper chirp set (now >2% \rightarrow 1.6%)

LCLS Injector Commissioning

slide compliments P. Emma

dowell@slac.stanford.edu

Accelerator

rotron Radiation Laboratory

Problems / Issues

- Low cathode quantum efficiency
 - Improving with time & laser cleaning
- Drive laser oscillator loses lock to the RF reference
 - New oscillator to be installed during fall 2007 (Compliments of Femtolasers)
- BC1 dipoles have marginal field quality
 - Problem aggravated by longer bunch from gun than expected: 1.05mm instead of 0.84mm (rms)
 - Will be shimmed and re-measured during Fall 2007
- Crucial diagnostics not functioning
 - Faraday cup
 - On-axis alignment laser
 - Gun-to-Linac charge toroid
- Significant wake fields in x-band structure
- Difficult to maintain good emittance
 - Day-to-day emittance varies from 1.1 to 1.5 microns for projected
- OTR diagnostics plagued by COTR
 - Also starting to see small 'holes' in 1 micron Al foils
 - Digital cameras lose trigger and video synch
- Wire scanners vibrate

2007 FEL Conference

Stanford Synchrotron Radiation Laboratory

Comparison of Required and Demonstrated Beam Properties

Parameter	Sym	dsgn	meas.	unit
Final e ⁻ energy	γ mc ²	15	15	GeV
Bunch charge	Q	1000	1000	pС
Init. bunch length (fwhm)	∆t _o	10	10	ps
Fin. bunch length (fwhm)	Δt_{f}	2.3	1.5	ps
Initial peak current	I _{рк0}	100	100	А
Projected norm emittance	γε _{x,y}	1.2	1.1 to 1.3	μm
Slice norm. emittance	γε ^s _{x,y}	1.0	0.8 to 1.0	μm
Single bunch rep. rate	f	120	10-30	Hz
RF gun field at cathode	E _{cathode}	120	115	MV/m
Laser energy on cathode	U,	250	450	μJ
Laser wavelength	λ,	255	255	nm
Laser diameter on cathode	2R	1.5	1.3	тт
Cathode material	-	Си	Cu	
Cathode quantum eff.	QE	6	3	10 ⁻⁵
Commissioning duration	-	8	5	то

2007 FEL Conference

Summary of Accomplishments

- Achieved emittance goal of 1.2 micron projected, Less than 1 micron / slice at 1nC!
- Peak current 100 amps out of gun, 500 amps after compressing in BC1
- Less than 1.5% charge jitter
- Accelerated compressed bunches to 15 GeV
- **Greater than 90% system up-time**
 - Operating continuously April 5 to Aug 24, 2007
- First Observation of Coherent Optical Transition Radiation during beam transport and compression
- The Injector Meets LCLS Requirements!

Stanford Synchrotron Radiation Laboratory

The LCLS Injector Commissioning Team:

Special Thanks to the LCLS Injector Team who allowed me to show their results.

R. Akre J. Castro Y. Ding **D.** Dowell P. Emma J. Frisch S. Gilevich G. Hays Ph. Hering Z. Huang R. Iverson C. Limborg-Deprey H. Loos A. Miahnahri J. Schmerge J. Turner J. Welch W. White J. Wu

DESY L. Froelich T. Limberg E. Prat M. Roehrs J. Roensch (PITZ)

And Our Visitors:

Trieste P. Craevich G. Penco M. Trovo

> **BESSY** T. Kamps

Soleil M.-E. Couprie

2007 FEL Conference LCLS Injector Commissioning

Stanford Synchrotron Radiation Laboratory

Pie(m)-oi-Gold Emittance at the end of the Rainbow

Special Thanks to the LCLS Gun Group: Erik Jongewaard Cecile Limborg-Deprey John Schmerge Bob Kirby C. Rivetta Zenghai Li Liling Xiao Juwen Wang Jim Lewandowski Arnold Vlieks Valery Dolgashev

Thanks for a Great Gun!!

David H. Dowell et al. dowell@slac.stanford.edu

2007 FEL Conference LCLS Injector Commissioning