CEA / Service des Photons Atomes et Molécules

Coherent Harmonic Generation on UVSOR-II storage ring

M. Labat, C. Bruni, G. Lambert, M. Hosaka, A. Mochihashi, M. Shimada, Y. Takashima, M. Katoh, T. Hara, K. Fukui, M.E. Couprie.

Acknowledgments: S. Bielawski, C. Szwaj, J. Yamazaki.

CHG FEL configuration

(2) Density modulation

CHG FELs background

- CHG first proposed in 1982
- R. Coïsson and F. De Martini, Phys. Of Quant. Elec. 9 (1982).

- CHG with external seed:
 - First demonstration on ACO storage ring:
 - Nd:Yag laser (1064.1 nm) seeded in OK
 - Generation of H3 (354.7 nm) of fund.
 - Generation of H3 (177 nm) and H5 (<u>106.4 nm</u>) of doubled laser
 - Similar results on:
 - Super ACO storage ring: R. Prazeres et al., NIM A304 (1991).
 - MAX-lab storage ring: S. Werin et al., NIM A290 (1990).
 - Present experiments (using Ti:Sa laser at 800 nm):
 - @ UVSOR-II M. Labat et al., Euro. Phys Jour. D 44 (2007) 187.
 - @ ELETTRA F. Curbis et al., FEL'07.
- CHG with internal seed (FEL pulse stored in a cavity):
 - @ DUKE: V. Litvinenko et al., NIM A507 (2003).
 - at 665.4 nm \rightarrow H3 (221.8 nm)
 - at 236 nm \rightarrow H2 to H7 (118 to 37 nm)
 - @ ELETTRA:
 - at 660 nm gives H3 (220 nm) *G. De Ninno, Proc. FEL'04 (2004) 237.*

R. Prazeres et al., NIM A272 (1988).

CHG and HGHG FELs

• CHG FELs on SR:

- Limited undulator length + Limited beam quality
 - \rightarrow Limited power

• HGHG FELs:

L.H. Yu et al., Science 489 (2000).

- Long undulators \rightarrow saturation power \sim **GW**
- Short wavelengths
- Good coherence
- Future FEL sources (Arc-En-Ciel, BESSY-FEL, Fermi, 4GLS, MAX-Lab, ...)

• Common issues:

- Seeding techniques: synchronisation, alignement
- Seeding *energy level* to overcome shot noise
- *Coherence* improvement from seeding
- Nonlinear *harmonic generation*

→ Investigations on CHG FELs can be useful for future FELs sources GW @ ~ 1nm

CHG experiments on UVSOR-II SR

UVSOR-II FEL

Mode-locked Ti:Sa oscillator (Coherent, Mira 900-F), and Regenerative amplifier (Coherent, Legend HE)

1st result: Coherent Generation of H3 (266 nm)

M. Labat et al., Euro. Phys Jour. D 44 (2007) 187.

Beam dynamics studies (1)

- Simulation of e- distribution:
 - Beam heating → Saturation
 - Double oscillating structure:
 - Laser repetition rate
 - Synchrotron frequency
 - Equilibrium state depends on laser parameters
 - \rightarrow possible adjustment of heating
 - \rightarrow optimisation of average/peak
- Exp. measurement:

→ Bunch lengthening ~ 10 %

Qualitative agreement with simulations

M. Labat et al., submitted to Eur. Phys. Lett. In July 2007.

Beam dynamics studies (2)

- Simulation of beam profile evolution:
 - At each injection (i):
 - \rightarrow Hole (< 10 turns life time)
 - Progressive diffusion
 - Progressive lengthening

Saturation comes from LOCAL HEATING

CHG Transverse Coherence

- Young slits experiment:
 - \rightarrow 2D interference pattern
 - \rightarrow Visibility of the fringes
 - \rightarrow Mutual coherence degree \rightarrow **Transverse coherence**
- 2D detector:
 - Fast intensified CCD camera for CHG (harmonic pulse gating)

CHG transverse coherence

• Further FEL analysis undergoing in collaboration with G. Dattoli

- Oscillator FELs:
 - Select efficient coupling coef. between transverse cavity modes and harmonics *M.J. Schmitt et al.*, *PRA 34* (1986) 4843
 - Wave guides H. Bluem et al., PRL67 (1991) 824
- CHG FELs:
 - No cavity \rightarrow no possible mode selection
 - SE even harmonics: off-axis
 - CHG even harmonics expected: strong off axis radiation

• Angular distribution of H2:

 \rightarrow Clear off-axis distribution

Comparison to SE calculated with SRW & SPECTRA.
 → CHG <u>appears</u>:

 More divergent
 To be confirmed with
 MEDUSA simulations
 (H. Freund, Private Communications)

- Helical undulators enable:
 - **Circular polarisation** \rightarrow various users experiments
- Debated issue:
 - "Azymuthal resonance"
 - \rightarrow HG on-axis

H.P. Freund et al., PRL 94 (2005).

- Usual resonance
 - \rightarrow HG off-axis ...

G. Geloni et al., Opt. Comm. 271 (2007).

- Experimental setup @ UVSOR:
 - **OK** \rightarrow helical configuration
 - e- beam → E=500 MeV

for resonance matching @ 800 nm

- Laser \rightarrow variable polarisation using a $\lambda/4$

• Results:

- Coherent Harmonic Generation on H2:

H2 intensity = SE x 3

– Still CHG on H3

- Angular distribution of H2:
 - \rightarrow Off-axis
- Laser polarisation dependency of H2:
 - − (L) \rightarrow max CHG
 - (C) → min CHG
 - Expected/Unpexted
 - Further checking on:
 - Alignment
 - Over bunching
- Next: HG efficiency vs n_H

Conclusion

- Experimental work on CHG FEL @ UVSOR-II:
 - \rightarrow Beam dynamics under laser heating
 - \rightarrow Seeding effect on transverse coherence
 - → Harmonic Generation possibilities:
 - * Even HG
 - * HG with helical undulators

Step forward in CHG FEL understanding

Encouraging/Useful results for HGHG FELs

CHG energy per pulse

- Calculation of SE level with SPECTRA:
 - 1.8 pJ @ 2.4 mA on detector
 - 7.2 pJ before filter
- Amplification of SE by factor 5
- Estimation of CHG energy: SE x 5 x 2.4
 CHG ~ 87.5 pJ

CHG ~ 0.1 µJ

Longitudinal coherence

CHG intensity optimisation

- Systematic measurements versus:
 - Undulator gap

- Laser parameters (power, pulse duration, diameter)

→ Optimisation of H3

Harmonic Generation

- Future investigations :
 - Compare planar/helical configurations in terms of :
 - HG efficiency vs n_H

BP filter @ 400 nm:

* Opto sigma corporation: VPF-25C-40-40-4000 Centered @ 405 nm $\Delta\lambda_{\text{fwhm}}=40 \text{ nm}$ $T_{405 \text{ nm}} = 50 \%$ $T_{800 \text{ nm}} = 0.01\%$ * Corion: P10405A-H972 Centered @ 405 nm $\Delta \lambda_{\text{fwhm}} = 10 \text{ nm}$ $T_{405 \text{ nm}} = 50 \% ??$ $T_{800 \text{ nm}} = 0.01\%$

Low pass filter: Sigma Kouki UTVAF-50S-34U $T_{\lambda < 340 \text{ nm}} < 0.01 \text{ \%}$ BP filter @ 200 nm: MA200nm $T_{200nm} = 12 \%$ $\Delta\lambda fwhm=10 nm$ $T_{800nm} = 0.01\%$

- Dear Marie-san,
- •
- Actually the filter is very old one and I do not know from which company it is bought.
- Yesterday I checked removing from the filter holder and found
- it is just labeled "MA200nm".
- The filter size is 30mm and we have a lot of similar ones.
- I am not very sure but the typical values of specification of that kind of filters are
- •
- Peak transmission 12%
- Band width FWHM = 10nm
- •
- I think in case of the filter @200 nm these values is not far.
- •
- •
- Best Regar

- Dear Marie-san,
- •
- •
- The reference of the filter is
- Sigma Kouki UTVAF-50S-34U
- You can find information of the filter here.
- •
- <u>http://www.sigma-</u> <u>koki.com/english/B/Filters/ColoredGlassFilters/UTVAF/UTVAF.html#0.</u>
- •
- The 200 nm filter is very old one and I am not sure that I can find the reference.
- •
- Best regards,
- Masahito Hosaka