

... for a brighter future

1-Å FEL Oscillator with ERL Beams

29th International FEL Conference August 26-31, BINP

Novosibirsk, Russia

Kwang-Je Kim, ANL Sven Reiche, UCLA Yuri Shvyd'ko, ANL

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

FELs for λ<1-Å Wavelengths

- High-gain FEL amplifier, SASE or HGHG, as an option for for future light source providing an enormous jump in peak brightness, became realistic due to advance in gun-linac technology
 - I_P ~ several kA, ε_x^n ~ 1 mm-mr beams
 - LCLS, European X-FEL, SCSS, Fermi, Arc-en-Ciel,..
- Electron beams from guns for another option for FLS, the ERLs, promise to be extreme low-emittance, high average power
 - $I_{P} \sim 4-12 \text{ A}, \epsilon_{x}^{n} \sim 0.1 \text{ mm-mr}$
 - Rep rates upto 1.3 Gz
- We discuss an X-ray FEL Oscillator (XFEL-O) for λ <1-Å based on high energy ERL beams
 - High peak as well as average brightness & narrow bandwidth

Principles of an FEL Oscillator

Small signal gain $G = \Delta P_{opt} / P_{opt}$

- Start-up: $(1+G_0) R_1 R_2 > 1$ (R₁& R₂ : mirror reflectivity)
- Saturation: $(1+G_{sat}) R_1 R_2 = 1$

Synchronism

- Spacing between electron bunches=2L/n (L: length of the cavity)

Feedback-Enhanced x-rays

- X-ray FEL Oscillator (XFEL-O) using Bragg reflector was first proposed by Colella and Lucio at a BNL workshop in 1984.
- (This was also when high-gain FEL and SASE was proposal by Bonifacio, Narducci and Pelegrini, independently from Saldin's earlier work)
- Feedback-enhanced x-rays using electron beams optimized for high-gain amplifiers have been studied recently:
 - Electron outcoupling scheme by Adams and Materlik (1996)
 - Regenerative amplifier using LCLS beam (Huang and Ruth, 2006)

Main Issues for ERL-based XFEL-O

Electron beams of suitable characteristics

- Production and recirculation of high quality beams

FEL dynamics

- Sufficient initial gain
- Coupling of spontaneous emission to coherent mode
- Beam degradation consistent with recirculation path

High reflectivity optical cavity

- Crystals in backscattering configuration
- Focusing elements
- Outcoupling schemes

Cornell 5 GeV ERL Parameter scaled to 7 GeV APS II: G. Hoffstaetter, FLS 2006 Workshop, DESY

	APS Now	High Flux	High Coherence	Ultrashort Pulse	
Average Current (mA)	100	100	25	1	
Repetition rate (MHz)	0.3 ~ 352	1300	1300	1	
Bunch charge (pC)	0.3 ~ 60	0.077	19 (60)**	1	
Emittance (nm)	3.1 x 0.025	0.022 x 0.022	0.006 x 0.006	0.37 x 0.37	
Rms bunch length (ps)	20 ~ 70	2	2	0.1	
Rms momentum spread (%)	0.1	0.02	0.02	0.3	

With gun optimization, the charge can be increased to 60 pC

I.V. Bazarov & C.K. Sinclair, PRSTAB,8, 0342002 (2005)

Preliminary layout view of an ERL upgrade to CHESS in the present CESR tunnel. A new tunnel with a return loop will be added to CESR. Electrons are injected into superconducting cavities at () and accelerated to 2.5 GeV in the first haif of the main linac, then to 5 GeV in the second hait. The green lines show 18 possible beamline locations. Electrons travel around the CESR magnets clockwise and re-enter the linac out of phase. Their energy is extracted and the spent electrons are then sent to the dump (D).

FEL Beam Dynamics

Gain calculations

- Analytic formula for low signal gain including diffraction and electron beam profile
- Steady state GENISIS simulation for general intra-cavity power to determine saturation power

Time-dependent oscillator simulation by GENO

- Extend OPC by adding mirror bandwidth (Reiche)
- Necessary to establish the growth from spontaneous emission

Reduce the CPU time by

- Modeling a short window (25 fs)
- Tracking a single frequency component for radiation wavefront since other components are outside the crystal bandpass
- About 2 hr for one pass

Saturation: As circulating power increases the gain drops and reach steady state when gain=loss

E=7GeV, λ =1Å Q=19 pC (Ip=3.8A), N_u=3000 Mirror reflectivity=90% Saturation power=19 MW

E=7GeV, λ=1Å Q=40 pC (Ip=8 A), N_u=3000 Mirror reflectivity=80% Saturation power=21MW

KJK, FEL07, BINP August 28, 2007

Examples of Steady State Calculation

$$\sigma_{\tau}$$
=2 ps, σ_{γ} =1.37, ε_{xn}=0.82 10⁻⁷m
Z_R=β*=10~12 m

λ(Å)	E(GeV)	Q	K	λ _υ (cm)	Nu	G ₀	R _T	P _{sat}
		(pC)				(%)	(%)	(MW)
1	7	19	1.414	1.88	3000	28	90	19
1	7	60	1.414	1.88	3000	~100	83	21
0.84	7.55	19	1.414	1.88	3000	28	90	20
0.84	10	19	2	2.2	2800	45	83	18

Results of GENO Simulation

Constant electron focusing (β_{ave} **=5.6 m)**

- Steady state gain is ~40% for low charge case (19 pC)
- Exponential growth did not occur-- probably coupling of spontaneous emission to coherent mode is too small- - - -

No focusing, beam waist at the undulator center (β^* ~10 m) and mode Rayleigh length ~ β^*

- Smaller gain, but a good coupling to the coherent mode
- High charge case (60 pC): exponential gain and saturation observed
- With 19 pC, growth is not strong—factor 6 over spontaneous after 40 passes (as of 6 AM this morning!)
- Further optimization of electron and mode parameters will be necessary

Desired Optics for the X-FEL Oscillator (Y. Shvyd'ko)

Reflectivity R₁ x R₂ >90-80%

- "Pure" diamond or sapphire

Transmissivity T ~5%

- Thin crystal, accompanying diffraction in near BS

Focusing elements

- Curving crystal can affect reflectivity even for R~50m
- Grazing incidence mirrors or compound reflective lenses

Heat loading is OK to 1 MHz, may be up to 100Mz

- Cooling AL2O3 to 40 degree

Options for XFEL-O Cavities (Y. Shvyd'ko)

 $AI_2O_3 xAI_2O_3 @14.3 \text{ keV}$ $R_T=0.87, G_{sat}=15\%, T=3\%$

CxCxmirror @12.4 keV

RT=0.91, G_{sat}=10%, T=4%

Al₂O₃xAl₂O₃xSiO₂@ 14.4125 keV RT=0.82, G_{sat}=22 %, T=4%

Energy Acceptance of the Recirculation-Pass for APS-ERL

- Genesis simulation shows that the rms energy spead increases from 0.02% to 0.05% after the FEL interaction
- The ERL return pass can accommodate 0.05% energy spread

Photon Performance of XFEL-O

- **Wavelength: 1-Å or shorter,** ε_{γ} =12.4 keV or higher
- Full transverse coherence
- Full temporal coherence in 1 ps duration
 - $\Box \Delta v/v=0.3 \ 10^{-6}$; h $\Delta v=4 \ meV$
- 10⁹ photons (~ 1 μJ) /pulse
 - Peak spectral brightness~LCLS
- Rep rate: 1 MHz or higher, limited by crystal heat load, 100MHz?
 - Average brightness 10^{27} ($\rightarrow 10^{29}$) #photons/(mm-mr)²(0.1%BW)
 - 10³-10⁵ times higher than ERL based undulator source

Science Drivers for XFEL-O

- Inelastic x-ray scattering (IXS) and nuclear resonant scattering (NRS) are flux limited experiments! Need more spectral flux in a meV bandwidth!.
- Undulators at storage rings generate radiation with ≈ 100-200 eV bandwidth. Only ≈ 10⁻⁵ is used, the rest is filtered out by meV-monochromators.

Presently @ APS: $\approx 5 \times 10^9$ photons/s/meV (14.4 keV)

XFEL-O is a perfect x-ray source for:

- high-energy-resolution spectroscopy (meV IXS, neV NRS, etc.), and
- imaging requiring large coherent volumes.
- Expected with XFEL-O ≈ 10¹⁵ photons/s/meV (14.4 keV) with 10⁷ Hz repetition rate.

Concluding Remarks

- XFEL-O appears to be feasible with beams expected from future ERLs
- It is a promising and powerful addition to ERL capabilities
- Application areas: nuclear resonance scattering, coherent imaging, inelastic scattering,...
- This is initial exploration with much room for further optimization.

