Towards a Low Emittance X-ray FEL at PSI

A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald, M. Paraliev, M. Pedrozzi, J.-Y. Raguin, L. Rivkin, T. Schietinger, V. Schlott, L. Schulz, A. Streun, F. Stulle, D. Vermeulen, F. Wei, A.F. Wrulich

Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

Outline of the talk

- 1. Introduction to the PSI-XFEL
- 2. Overview innovative technologies
- 3. The 250 MeV injector facility

http://fel.web.psi.ch

Motivation

But:

one would like to have 3000-5000 h/year for experiments
→ a national 1Å source would be needed

Drawback:

XFELs are presently too expensive to be financed as a national project within Europe

→ bring the cost down !

Solution: shorter accelerator / lower beam energy → reduce beam emittance while keeping brightness The PSI-XFEL is based on 3 innovative features :

1. Generate a low emittance electron beam
 → field emission from field emitter arrays (FEA) or single micro tips (needle cathodes)

2. Fast acceleration after the emission to avoid beam blow up due to space charge forces
→ diode configuration with high applied pulsed voltage

3. Low initial current to reduce beam blow up by space charge effects
→ 3-fold bunch compression scheme for high electron pulse compression

Proposed layout of the PSI-XFEL

XFEL Parameters:

3

Target values @ undulator entrance (5.8 GeV, Q= 200 pC)peak current1.5 kAslice emittance $0.2 \text{ mm mrad (rms)}^*$ energy spread 10^{-4} undulator length30 m* 1pC slice

International context

_ 4

The PSI-XFEL Site

PSI-XFEL Construction

Project Realization Strategy

Development of the critical technology

- Iow emittance electron source
- high voltage generation and high gradient acceleration
- two-frequency cavity for bunch compression

Experimental verification of this technology

- Construction of a high voltage and high gradient facility
- Construction of a 250 MeV injector facility \rightarrow 2008-2011

Construction of an X-FEL

- FEL-3 / 10 nm 1 nm
- FEL-2 / 1 nm 0.3 nm
- FEL-1 / 0.3 0.1 nm

→ development after successful demonstration of the low emittance accelerator concept

(2011-2016)

 \rightarrow ongoing

Experimental Verification of the Critical Technology (1)

Low emittance electron source

Challenge: sufficient current, low emittance (5.5 A, < 0.05 mm mrad) Possible electron sources:

1. Field Emitter Arrays (FEA)

extracted current: I/tip ~ 10 μ A (DC)

- 2. single tip field emitter (needle cathode)
 - \rightarrow pure field emission: 470 mA (2ns)
 - \rightarrow emission triggered by laser: I ~ 2.9 A (16ps)
- 3. scaled photo cathode

start-up solution to give more time for the FEA development

Note: Parameters for photo emission and field emission are chosen such that the accelerator design is the same for both !

Experimental Verification of the Critical Technology (2)

High gradient acceleration

- HV tests done successfully
- start of operation end 2007
- later upgrade to 1 MV foreseen

Experimental Verification of the Critical Technology (3)

Bunch compression scheme

2-frequency cavity for large compression:

- off-crest acceleration with fundamental frequency leads to energy chirp for ballistic bunching
- harmonic frequency flattens accelerating field and allows pulse shape control during rf-compression

Emittance preservation

high compression ratio and transport of the emittance in the relativistic regime to be verified

→ build 250 MeV Injector Facility

Construction + Operation: 2008 – 2011

Conceptual Layout (CDR):

Location of the 250 MeV injector facility

Simulations of the 250 MeV injector

Example: Field tolerance studies

- basic tolerance studies are done, but need to be verified
- pulser, first solenoid, and fundamental of 2-f cavity are most critical components (tolerances below 5.10⁻³)
- other tolerances more relaxed

Simulations of the 250 MeV injector

Summary and outlook

Proof of critical technology for PSI-XFEL

development and experimental verification ongoing

250 MeV injector to be built

- beam dynamics simulations of the injector are well advanced
- different codes are used: envelope tracker (HOMDYN, BET), particle codes (IMPACT-T, MAFIA, GPT, CAPONE)
- S2E simulation results show feasibility of the concept (bunch compression, emittance preservation)
- basic tolerance studies are done
- alignment requirements seem not to be too tight
- \rightarrow build the thing and test the concept experimentally