

Electron Outcoupling Scheme for the Novosibirsk FEL

<u>A.N. Matveenko</u>, O.A. Shevchenko, V.G. Tcheskidov, N.A. Vinokurov

Budker INP, Novosibirsk, Russia

Schematic diagram of electron outcoupling

Why electron outcoupling?

- lower load on optical cavity mirrors
- wavelength tunability (high power partially transparent mirrors have narrow band)

Second stage of the Novosibirsk FEL (under construction now)

Electron beam and laser radiation parameters

Energy, MeV	40
Peak current, A	100
Electron beam emittance (normilized), μm	20
Relative energy spread	3·10 ⁻³
Undulator period, cm	6
Maximum K	2
Number of periods in each undulator	28
Radiation wavelength, µm	15

Second stage of the Novosibirsk FEL (under construction now)

Electron outcoupling scheme of Novosibirsk FEL

Features

- Three undulators
- Achromatic bend
- Strong focusing in undulators

Small angle achromatic bend

Optical functions in undulators

Modelling

• GENESIS code (by S. Reiche) is used to simulate the operation of FEL and electron outcoupling itself

• OPC code (by J.G. Karssenberg, P.J.M. van der Slot) is used to propagate radiation field in the optical cavity

Fneray MeV	40	Radiation wavelength, µm	15
Peak current A	100	Optical cavity length, m	40
Relative energy spread	3·10 ⁻³	Optical cavity fundamental frequency, MHz	3.76
Maximum K	2	Mirror radius of curvature, m	25
Undulator period, cm	6	Mirror reflectivity, %	90
Number of periods in each undulator	28	Optical cavity β on mirrors, m	50
Deflection angle in second undulator, mrad	3	Optical cavity β_0 (Raleigh length), m	10

Bunching factor vs. length

Power distribution on the forward optical cavity mirror surface (left) and on the outcoupling mirror surface (right).

Intensity profiles

on the forward optical cavity mirror surface (green, left axis) and on the outcoupling mirror surface (red, right axis).

Conclusion

• Electron outcoupling scheme with trajectory deflection in the second undulator (radiator) is considered.

• The scheme with deflection in the third undulator was also simulated, but the FEL output power was less for our beam parameters.

• The results of calculations look reasonable and show that the chosen parameters of FEL magnetic system are close to optimal.

Thank you!