

FEL2007 Aug 26-31, 2007, Budker INP, Новосивирск, Russia

Operational Experience with FLASH

Siegfried Schreiber, DESY

email: siegfried.schreiber@desy.de

- FLASH Free Electron Laser User Facility
- VUV/EUV lasing
- Performance and operational issues
- Summary and Outlook

DESY Hamburg, Germany

http://flash.desy.de/

TESLA Test Facility, FLASH Injector + acceleration + bunch compression

Tunnel with acceleration + undulators

experimental hall

First lasing 108 nm Feb-2000 32 nm in Jan-2005 13 nm in Apr-2006

FLASH Overview

SASE highlights

From First Lasing at 13 nm to Saturation

lovosibirsk, Russia

SASE Performance

FLMHOLTZ

Brilliance:

~10²⁹ B

Novosibi

13.4

13.5

13.6

13.7

λ [nm]

13.8

13.9

14

14.1

Higher Harmonics

- 3rd harmonic: 4.6 nm (270 eV), 250 nJ, 40 MW peak power
- 5th harmonic: 2.7 nm (450 eV), 10 nJ, 2 MW peak power

Peak Brilliance

HELMHOLTZ

DESY

Operation of a free-electron laser from the extreme ultraviolet to the water window

W. ACKERMANN¹, G. ASOVA², V. AYVAZYAN³, A. AZIMA³, N. BABOI³, J. BÄHR², V. BALANDIN³, B. BEUTNER⁴, A. BRANDT³, A. BOLZMANN⁵. R, BRINKMANN³, O. I. BROVKO⁶, M. CASTELLANO⁷, P. CASTRO³, L. CATANI⁸, E. CHIADRONI⁸, S. CHOROBA³, A. CIANCHI⁸, J. T. COSTELLO⁹, D. CUBAYNES¹⁰, J. DARDIS⁹, W. DECKING³, H. DELSIM-HASHEMI⁴, A. DELSERIEYS¹¹, G. DI PIRRO⁷, M. DOHLUS³, S. DÜSTERER³, A. ECKHARDT⁴, H. T. EDWARDS¹², B. FAATZ³, J. FELDHAUS³, K. FLÖTTMANN³, J. FRISCH¹³, L. FRÖHLICH⁴, T. GARVEY¹⁴, U. GENSCH², CH. GERTH³, M. GÖRLER³, N. GOLUBEVA3, H.-J. GRABOSCH2, M. GRECKI15, O. GRIMM3, K. HACKER34, U. HAHN3, J. H. HAN3, K. HONKAVAARA4, T. HOTT3, M. HÜNING3, Y. IVANISENKO¹⁶, E. JAESCHKE¹⁷, W. JALMUZNA¹⁸, T. JEZYNSKI¹⁵, R. KAMMERING³, V. KATALEV³, K. KAVANAGH⁹, E. T. KENNEDY⁹, S. KHODYACHYKH², K. KLOSE², V. KOCHARYAN³, M. KÖRFER³, M. KOLLEWE³, W. KOPREK¹⁸, S. KOREPANOV², D. KOSTIN³, M. KRASSILNIKOV², G, KUBE³, M, KUHLMANN³, C, L, S, LEWIS¹¹, L, LILJE³, T, LIMBERG³, D, LIPKA³, F, LÖHL⁴, H, LUNA⁹, M, LUONG¹⁹, M, MARTINS⁴, M, MEYER¹⁰, P. MICHELATO²⁰, V. MILTCHEV⁴, W. D. MÖLLER³, L. MONACO²⁰, W. F. O. MÜLLER¹, O. NAPIERALSKI¹⁵, O. NAPOLY¹⁹, P. NICOLOSI²¹, D. NÖLLE³, T. NUÑEZ³, A. OPPELT², C. PAGANI²⁰, R. PAPARELLA¹⁹, N. PCHALEK^{3,4}, J. PEDREGOSA-GUTIERREZ⁹, B. PETERSEN³, B. PETROSYAN², G. PETROSYAN³, L. PETROSYAN3, J. PFLÜGER3, E. PLÖNJES3, L. POLETTO2, K. POZNIAK18, E. PRAT3.4, D. PROCH3, P. PUCYK18, P. RADCLIFFE3, H. REDLIN3, K. REHLICH³, M. RICHTER²², M. ROEHRS^{3,4}, J. ROENSCH⁴, R. ROMANIUK¹⁸, M. ROSS¹³, J. ROSSBACH⁴, V. RYBNIKOV³, M. SACHWITZ², E. L. SALDIN³, W. SANDNER23, H. SCHLARB3, B. SCHMIDT3, M. SCHMITZ3, P. SCHMÜSER4, J. R. SCHNEIDER3, E. A. SCHNEIDMILLER3, S. SCHNEPP1, S. SCHREIBER³, M. SEIDEL^{3,24}, D. SERTORE²⁰, A. V. SHABUNOV⁶, C. SIMON¹⁹, S. SIMROCK³, E. SOMBROWSKI³, A. A. SOROKIN^{25,22}, P. SPANKNEBEL²⁶, R. SPESYVTSEV¹⁶, L. STAYKOV², B. STEFFEN³, F. STEPHAN², F. STULLE³, H. THOM³, K. TIEDTKE³, M. TISCHER³, S. TOLEIKIS³, R. TREUSCH³, D. TRINES³, I. TSAKOV²⁷, E. VOGEL³, T. WEILAND¹, H. WEISE³, M. WELLHÖFER⁴, M. WENDT^{3,12}, I. WILL²³, A. WINTER³, K. WITTENBURG³, W. WURTH⁴, P. YEATES9, M. V. YURKOV3*, I. ZAGORODNOV3 AND K. ZAPFE3

Affiliations for authors: ¹Technische Universität Darmstadt, FB 18, Institut TEMF, Schlossgartenstr. 8, 64289 Darmstadt, Germany; ²Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany; ³Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany; ⁴Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany; ⁶Bayerische Julius-Maximilians Universität, Institut für Theor. Physik und Astrophysik, Am Hubland, 97074 Wurzburg, Germany; ⁶Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia; ⁷INFN-LNF, via E. Fermi 40, 00044 Frascati, Italy; ⁸INFN-Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy; ⁹National Center for Plasma Science and Technology and School for Physical Sciences, Dublin City University, Dublin, Ireland; ¹⁰LXAM/CNRS, Centre Universitare Paris-Sud, Batiment 350, F-91405 Orsay Cedex, France; ¹¹International Research Centre for Experimental Physics, Queen's University, Belfast, BT7 1NN, UK; ¹²Fermi National Accelerator Laboratory, MS 306, P.O.Box 500, Batavia, Illinois 60510, USA; ¹³Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025, USA; ¹⁴Laboratoire de L'Accelerateur Lineaire, IN2P3-CNRS, Universite de Paris-Sud, B.P. 34, 91898 Orsay, France; ¹⁵Technical University of Lodz, AI. Politechniki 11, Lodz, Poland; ¹⁶Kharkiv National University, 4 Svobody sq, 61077, Kharkiv, Ukraine; ¹⁷BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany; ¹⁸Institute of Electronic Systems, Warsaw University of Padova, via Gradenigo 6/B, 35131, Padova, Italy; ²⁰Physikalisch-Technische Bundesanstalt, PTB, Abbestrasse 2-12, D-10587 Berlin, Germany; ²³Max-Born-Str. 2a, 12489 Berlin, Germany; ²⁴Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; ²⁵Ioffe Physico-Technical Institute RAS, Polytekhnicheskaya 26, 194021 St. Petersburg, Russia; ²⁶Humboldt Universitä, Unter den Linden 6, 10099 Berlin, Germany; ²⁴Institute f

The Free-Electron Laser in Hamburg

New technologies for new science: Soon X-ray free-electron lasers will enable us to probe ultrafast physical, chemical and biochemical processes at atomic resolution, opening new frontiers for science and technology. At long last we may see, and not just model, how molecular machines really work.

http://flash.desy.de/

Accelerators | Photon Science | Particle Physics

Deutsches Elektronen-Synchrotron Member of the Helmholtz Association

1st round of user experiments

FLASH,

what a picture!

Femtosecond diffractive imaging with a soft-X-ray free-electron laser H.N. Chapman et al., Nature Physics 2 (2006) 839 • 30 proposals submitted in 2002

- 29 proposals approved in Sept. 2002
- 200 scientists involved from
- 60 institutes and 11 countries
- 11 proposals were combined in a joint project ("peak brightness collaboration")
- 2 proposals were combined into a project on biological samples
- 18 projects had beamtime in two campaigns:
 - Aug. 2005 Feb. 2006 & May 2006 March 2007 1st Round of First User Experiments

→ R. Treusch: "Research Highlights from FLASH" – next session

Linac Components

Photoinjector

FLASH

- laser driven RF gun
- L-band 1.3 GHz
- RF power 3.2 MW
- 42 MV/m gradient on cathode
- Pulsed 5 or 10 Hz

Cathode

• RF pulse length 100 to 900 µs

laser beam

e- beam

New RF Gun diagnostic section installed

- New diagnostic cross design with reduced wakefield
 - Easier alignment of elements in the section
 - dipole with larger gap
- RF gun is moved upstream by 30 cm
 - to increase efficiency of darkcurrent collimator
 - to make place for a darkcurrent kicker (not yet installed)
- reworked laser beamline
 - gated camera to measure single bunch transverse beam shape

Siegfried Schreiber

Photoinjector Laser

- Nd:YLF based laser
- designed for long pulse trains of up to 800 µs @ 10 Hz
- 10 kHz to 1 MHz within train
- average power in the Watt range
- single UV pulse energy some µJ
- requires high QE cathode (Cs₂Te)
- 2nd, fully diode pumped laser installed (laser 2)
- laser 1 has been running since 1997, the upgraded oscillator since Feb. 2004

In cooperation DESY – Max-Born-Institute, Berlin

Siegfried Schreiber, DESY, FEL2007 Aug 2

Photoinjector Laser

- Nd:YLF based laser
- designed for long pulse trains of up to 800 µs @ 10 Hz
- 10 kHz to 1 MHz within train
- average power in the Watt range
- single UV pulse energy some µJ
- requires high QE cathode (Cs₂Te)
- 2nd, fully diode pumped laser installed (laser 2)
- laser 1 has been running since 1997, the upgraded oscillator since Feb. 2004

In cooperation DESY – Max-Born-Institute, Berlin

Siegfried Schreiber, DESY, FEL2007 Aug 2

Tek	Run	Pk Detect	732 Acqs	10 Aug 06 09:45:01
	<u> </u>	in simistikitiidittiiti		
	-			
			an a	
2+				
	- 	 İ	┼╂┼┼┼┼┼┼╢┨╢╢	╡╢┇╢╻╟╎╢┇┇╻ ╟┼ ╻ ┇╻╷╷
4+				
	-	n an		
	3 (j.			
	-	a) Anarata anarata anarata	a de la companya de La companya de la comp	an a
1+		lister i de contractor		1 me
	-			
	Ch1 200	mY Ω	Ch2 1.0V Ω	M 200µs 2.5MS/s 400ns/pt
1000			Ch4 1.UV 12	A Aux 7 540mv
			The second secon	
				The summer
1			*** *	
2		•		
20				
			0 0 0 1900	
			· · · · [1114]	
1		0 00		
1				T++++
2	100	· · ·		

High QE Cs₂Te Cathodes

- Quantum efficiency (QE) starts high ~10 % and drops to ~0.5% during a couple of weeks, change of cathodes routine operation
- XPS at BESSY: traces of F and C found, depleted part: metallic Te

Fresh cathode 12-Dec-2006

Used cathode 7-Feb-2007

reiber, DESY, FEL2007 Aug 26-31, 2007, Novosibirsk, Ru:

RF Gun low level rf control

- Amplitude and phase regulation by calculating the vector sum of forward and reflected power
- FPGA based controller (latency reduced to 150 ns)
- Phase stability of 0.14 dg of 1.3 GHz or 300 fs achieved

Energy and Arrival Time Stability

- $dE/E = 2.4 \ 10^{-4}$ measured at 127 MeV
- Electron and FEL beam arrival time jitter 200 fs rms

Siegfried Schreiber, DESY, FEL2007 Aug 26-31, 2007, Novosibirsk, Russia

Transverse Projected Emittance

GEMEINSCHAFT

HELMHOLTZ

 Projected normalized rms emittance (90% core)

FLASH

- = 1.6 mm mrad
- Jitter 2 3 % (rms)
- the projected emittance (on crest) is preserved along the linac
- lasing slice emittance in the undulator estimated from SASE radiation properties to be 1 to 1.5 mm mrad

Siegfried Schreiber, DESY, FEL2007 Aug 26-31, 2007, Novosibirsk, Russia

Longitudinal Bunch Shape

- Measured with LOLA S-band deflecting cavity
- resolution 10 to 50 µm
- First results on slice ٠ emittance measurements with LOLA

5

e^{norm} [mm mrad]

2

0⊥ -5

0

5

slice emittance density profile [a.u]

15

10

∆t[ps]

20

25

→ B. Steffen: "Single-Shot Longitudinal Bunch Profile Measurements at FLASH" – We session

FLASH uses TESLA Accelerating Modules

Upgrade in the last 4 months

energy reach: 1 GeV (lasing @ 6.5 nm)

Dismounting of Module 5 for Repair

DESY

F

Module 6 during Installation

Undulators

HELMHOLTZ | Gemeinschaft

Single pass high gain FEL operating in the SASE mode (self amplified spontaneous emission)

- 6 undulator modules
- total length 27.3 m
- Permanent NdFeB magnets B=0.48 T, K=1.23
- Fixed gap of 12 mm
- Strong focusing with external electromagnetic quadrupole duplets
- Wirescanners and high resolution BPMs (20 μm)

Radiation Level Undulator Section

I**ELMHOLTZ** | Gemeinschaft

FLASH

- Mainly: darkcurrent from the RF gun
- Also: beam losses during commissioning times
- \rightarrow may result in high radiation doses in the undulator modules
- Level is going down together with better tuning of the orbit and the commissioning of the machine safety system

FLASH Experimental Hall

FLASH

→ R. Treusch: "Research Highlights from FLASH" – next session

SASE performance – selected issues

lasing with long bunch trainslasing at shortest wavelengthlasing with different wavelengths

Lasing with long bunch trains

GEMEINSCHAFT 800 µs charge (nC) 0.5 0.4 0.3 0.2 1 MHz, 800 bunches 0.1 100 200 400 500 300 50 kHz 100 kHz 500 kHz time luni

DES)

HELMHOLTZ

800 bunches

FLASH

- Transported 800 bunches to beam dump @ 5 Hz
- 1 MHz, 500 kHz, 100 kHz, and 50 kHz
- Lasing with > 450 bunches @ levels up to 70 to 80 µJ av.

Lasing with Long Pulse Trains

- Big step forward in long pulse train lasing
- Adaptive feed forward to compensate beam loading
- Large phase slopes during the train as observed earlier reduced now to some dg/800 us

example of beam loading compensation:

Siegfried Schreiber, DESY, FEL2007 Aug 26-31, 2007, Novosibirsk, Russia

Lasing with different Wavelengths

• Lasing at different wavelengths

- Switch on shift to shift bases
- Lasing with >14 wavelengths achieved
- Challenge 1
 - each energy requires new tuning
 - once tuned, reloading of files pretty fast
- Challenge 2
 - hit the right wavelength within 0.1 nm
 - sometimes quite tedious

Examples of wavelengths achieved:

achieved wavelength (nm)	Beam Energy (MeV)
13.1	680
13.7	680
15.1	650
16.9	610
20	576
18.9	580
20.9	550
25.5	500
28.6	478
32.5	465
32.5	445
35.1	428
38	407
40.4	397
47	374

Wavelengths requested

• User's favorites 13.5, 25.5 and 32 nm

SASE radiation energy

- During the 1st run: 1 to 5 μ J average single pulse energy
- During the 2nd run: 20 to 30 µJ average
- The high energy allows collimation of the photon beam \rightarrow improved pointing stability

Siegfried Schreiber, DESY, FEL2007 Aug 26-31, 2007, Novosibirsk, Russia

Stability

- Main issue for the last 2 years: improve stability
 - Injection: stability of laser profile, alignment injector section
 - Low level rf: improve rf feedbacks and stability (new hardware for rf gun and 1st acc. module with improved precision and reduced latency, stabilize ambient temperatures)
 - Slow feedbacks to reduce drifts: charge, compression, orbit
 - Beam optics: new optics, less sensitive to quad errors
 - Dispersion corrections
 - Beam based alignment undulator section with improved diagnostics
 - Better understanding of non-linear beam dynamics
 - Investigation and fixing external noise sources

Electro-magnetic interferences

- Many sources of EM interferences have been cured:
 - Low noise power supplies for most magnets
 - New grounding scheme injector area to fight against high currents on earth lines
 - Adequate distribution of main power stations
 - Compensation of PETRA ramps
 - and many more details
 - \rightarrow we have to fight many mostly small effects
 - \rightarrow but in the sum, we improve a lot!

Statistics and Run Time Distribution

Distribution of Run Time

- User period 1 had two runs:
 → run 1 in 2005/2006 with 119 days
 → run 2 in 2006/2007 with 160 days
- Next user period 2 will start end 2007/2008 with 1 long run and 203 days
- we also have study weeks
- \rightarrow FEL related machine studies

preparation of next block of user runs

 \rightarrow general accelerator studies (XFEL, ILC etc)

	7	
	6	
	5	
	4	User Experiments
	3	User run preparation
	2	
	1	FEL related Studies
	7	
S	6	
ek	5	
Ň	4	User Experiments
	3	User run preparation
	2	
	1	FEL related Studies
	4	
	3	
	2	
ssia	1	Accelerator Studies

Beam Time Distribution

- Run 2: May-2006 to Mar-2007
- \rightarrow 45 weeks or 7728 h
- User experiments had 3840 h of beam time (47 %)
- with 2798 h of actual beam delivery (73%)

Beam Time Usage User Runs

- ~70 % of the beam time is actually beam delivery
- slight improvement from run 1 to run 2 by 4 %

Time Spent on Tuning

- Beam delivery to users requires tuning
- mostly tuning of SASE performance and start-up/recovery after maintenance or downtimes
- In run 2, wavelength tuning came up in addition

User Run 1

User Run 2

SH

Downtime

- Downtime mainly due to RF stations
- a few 'big' events (cryo/rf stations)
- otherwise lots of little problems with downtimes ~4%

Schedule

Major Mid and Long Term Projects

- New experiments have been installed last months
 - IR undulator, optical replica, fast intra-train feedback etc
- New synchronization schemes under development
 - Fiber laser based master oscillator
 - for synchronization down to the 10 fs level
- Install 3rd harmonic accelerating cavity in injector
 - to flatten E-z phase space before compression
- Install 7th module, replace older modules
 - to reach 1.2 (perhaps 1.3 GeV) and lasing at 4.4 (3.7) nm
- Install darkcurrent kicker ds RF gun
 - reduction of accelerated darkcurrent
- Harmonic generation experiment

 \rightarrow H. Schlarb: "FLASH upgraded – Preparation for the European XFEL" – session last Tu

Last Updated: Tuesday, 5 June 2007, 16:47 GMT 17:47 UK

E-mail this to a friend

Printable version

Green light for flash fantastic

By Jonathan Amos Science reporter, BBC News

A major new particle accelerator is to be built at Hamburg, Germany, that is capable of producing super-brilliant, ultra-short flashes of X-ray light.

The intense beam made in the 3.4km-long (2.1 miles) machine will probe how matter is pieced together atom by atom.

The properties of the X-ray Free-Electron Lase should make it possible, for example, to film t mom 5-Jun-2007

Const Official launch of the European later X-ray Laser Facility XFEL.

It will be placed underground. The XFEL will b DESY (Deutsches Elektronen-Synchrotron) sit Hamburg and then run north-west, fanning ou experimental stations close to the neighbourir Schenefeld.

than 30m underground

NewsLine II C Home Subscribe **German Research Minister launches XFEL**

BBC

NEWS

European X-ray laser facility XFEL. Using essentially the same uperconducting accelerator technology that is planned for the ILC, the 3.4-kilometre XFEL (for X-ray free-electron laser) will produce high-intensity ultra-short X-ray flashes with the The XFEL will start in a properties of laser light. This will open up a whole range of new perspectives for fundamental research and for industrial

XFEL

The European X-Ray Free-Electron Laser

Technical Design Report

Summary

- First period of user experiments with 2 runs successfully finished -1st user run 2005/6 with 119 days of FEL beam, 2nd run ended March 2007 with 160 days of beam time
- Lasing at 13.1 nm a new record
- Saturation and full characterization of lasing at 13.7 nm
- Lasing has been achieved for many wavelengths and long pulse trains
- Wavelength change on a shift by shift basis
- Stability and performance in the last year has much improved compared to 2005: we provide 20 to 30 µJ average single pulse energy now
- Many user experiments have been successfully performed
- Next user period is 3 times overbooked: FLASH – a unique facility proving excellent opportunities for experiments