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Introduction - 1

An important characteristic of an FEL beam is its energy
spread.

One of the dominant contributions, for nanocoulomb bunches,
comes from the space charge effect; it scales with the beam
energy as γ−2. Space charge effects here are understood for a
beam moving with a constant velocity v .

There is a contribution of the coherent radiation of the beam
(CSR wake). It keeps balance between the electromagnetic
energy that is carried away by the radiation and the kinetic
energy of the beam particles. Effect of radiation due to a
longitudinal acceleration has been recently studied by Geloni
et al. (2007) and Bosch (2007)

A converging (or diverging) beam has a component of the self
field due to the radial motion [Bane & Chao, 2002].
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Introduction - 2

Note that many computer codes calculate the space charge
effect by assuming that the beam is moving with a constant
velocity v .

In this work we point out to a new component of the space charge
field that arises during longitudinal acceleration of the beam. At
large γ it scales as a/γ, where a is acceleration. We assume that
the beam is moving as a rigid body and does not change its shape
during the acceleration.
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Physical mechanism of the effect

The electromagnetic field of a moving bunch is compressed in the
transverse direction. The moving field carries more electromagnetic
energy then the field at rest.
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Physical mechanism of the effect
The electromagnetic energy is easily calculated for a Gaussian
bunch moving with velocity v in the z direction

n(x , y , ζ) =
N

(2π)3/2σzσ
2
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exp
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2σ2
⊥

−
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2σ2
z
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where N is the number of particles in the bunch, r =
√

x2 + y2,
ζ = z − vt, σx = σy = σ⊥ is the rms bunch size in the transverse
direction, and σz is the rms bunch length in the longitudinal
direction.
The electromagnetic field of such a bunch is calculated using the
Lorentz transformation from the beam frame. The energy density

u(r , ζ) =
E 2 + H2

8π
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Physical mechanism of the effect

Electromagnetic energy density u in units Q2/8πσ4 for a spherical
Gaussian bunch (σz = σ⊥) with a) γ = 1 and b) γ = 2. Note the
difference in the vertical scales.

6/18



Physical mechanism of the effect
The total electromagnetic energy W =

∫
udV grows with γ.

Plot of W in units Q2/σ for a spherical Gaussian bunch
(σ⊥ = σz = σ). The asymptotic expression for W is

W = Q2
√

πσz
log γ , γ� 1 .
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Physical mechanism of the effect
The increasing energy of the EM field is taken from the kinetic
energy of the particles via a longitudinal electric field that is
generated inside the beam. This field is caused by acceleration, but
it is NOT due to radiation!

The effect is known
from the “electro-
magnetic mass of
electron”. Page
348 from Panofsky
and Philips, ”Clas-
sical Electricity and
Magnetism”).
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The model
A beam is moving along the z axis with velocity v(t) that is the
same for all particles of the beam. Charge and current densities are

ρ = en(x , y , z − z0(t)), jz = ev(t)n(x , y , z − z0(t))

with v = dz0/dt.
The scalar and vector potentials

φ(r, t) =

∫
ρ(r ′, t − τ)

|r − r ′|
d3r ′ ,

A(r ′, t) =
1

c

∫
j(r ′, t − τ)

|r − r ′|
d3r ′ , (1)

where cτ = |r − r ′| . We assume that the acceleration a(t) = dv/dt
is small and expand the potentials in Taylor series keeping only
linear terms in acceleration.
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There are two such conditions

a� c2

l
,

∣∣∣∣ ȧa
∣∣∣∣� c

l
, (2)

where l is the characteristic size of the bunch.
The electric field of the beam is a sum of the space charge field
(which depends on v and does not depend on a) and a component
that vanishes in the limit when a = 0:

E ≈ Esc + Ẽ , (3)

We call Ẽ the acceleration field.
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The acceleration field
This gives the following expression for Ẽz ,

Ẽz = −
e

c2
a

∫
n (x ′, y ′, z ′ + vτ)

|r − r ′|
d3r ′

−
e

2c2
aβ

∫ (
β|r − r ′| − (z − z ′)

)
∂zzn

(
x ′, y ′, z ′ + vτ

)
d3r ′

+
e

2c2
a

∫ (
z − z ′

|r − r ′|
− 4β

)
∂zn

(
x ′, y ′, z ′ + vτ

)
d3r ′ .

In the ultrarelativistic limit γ� 1,

Ẽz = −

√
2

π

reN

σzγ
Eexte

−z2/2σ2
z , γ� 1 ,

with re = e2/mc2. We see that the acceleration field is directed
against the external field Eext and scales as Eext/γ. This contrasts
to the usual scaling ∝ γ−2 of the longitudinal space charge forces.
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Acceleration field for a Gaussian Bunch

The acceleration is related to the rate of change of the gamma
factor, a = (c/γ3β)dγ/dt. The energy change of a particle in the
beam due to the acceleration field is

∆E(r , z) =

∫
veẼzdt = −

I0
IA

mc2

∫γf

γi

dγ

γ3
G

(
r

σ⊥
,

z

σz

)
, (4)

where I0 = Nec/
√

2πσz is the peak current in the bunch,
IA = mc3/e is the Alfvén current, γi and γf are the initial and
final values of the gamma factor.
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Effect of conducting pipe
In reality, the beam is being accelerated inside a vacuum volume
that has a characteristic transverse size b. There is a field
generated by image charges and currents in the wall. If b/σ� 1,
these charges are located relatively far from the beam, and
variation of their field at the location of the beam over the distance
∼ σ is small. Hence, the calculation of the energy spread in the
beam can be carried out using only the free space field. Also the
electromagnetic energy of a relativistic beam propagating in a pipe
of radius b does not change with γ when γ & b/σz . We assume

γf =
b

σz
.

Note that typically b/σz � 1, and because our result has only a
logarithmic dependence on γ, it is rather insensitive to the exact
value of γf .
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LCLS example
LCLS rf-gun parameters: σz = 0.86 mm, σx = 0.6 mm, and
Q = 0.72 nC (corresponding to the peak current of I0 = 100 A).
We choose γi = 1 and γf = 20, corresponding to the beam pipe
radius of about 1.2 cm.

Energy loss induced by the acceleration field for four different slices in the
bunch (z/σz = 0, 1, 2, and 3; this number is indicated near the curves)
as a function of electron radial position.
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LCLS example - slice energy loss

The energy loss averaged over the transverse coordinate as a
function of the position z , curve 1 (for comparison, we also show
the energy loss introduced by the space charge effect, curve 2)
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LCLS example - slice energy spread

The rms energy spread in slices as a function of z , curve 1 (we also
show the energy loss and the rms energy spread introduced by the
space charge forces, curve 2).
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Energy balance

As was mentioned above, the acceleration field keeps balance
between the electromagnetic energy of the beam and the kinetic
energy of the particles:

dW

dt
= −e

∫
Ẽzvnd3r .

We calculated the electromagnetic energy difference for the beam
at the final state with γf = 20 and the initial state with γi = 1,
which gave us ∆W = 22.5 µJ. When we integrated the right side
of this equation over time from the initial to the final state, we
found that the work of the acceleration numerically is equal to
∆W , in perfect agreement with the energy balance equation.
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Conclusions

We point out to a new component of the self field of an
accelerated field, which is not due to coherent radiation. It
contributes to the beam energy chirp and the slice energy
spread in RF guns.

The physical origin of the field is due to the changing energy
of the Coulomb field. It keeps the energy balance between the
kinetic energy of the beam and the energy of the field.

We illustrated the effect for a typical RF gun parameters.

Many simulation computer codes neglect this field, and our
result allows to evaluate if this is important for a particular
problem.
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