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Basic FEL requirements
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No good mirrors at short wavelengths FELs must operate in high-gain mode

power gain length (1D):

Particles with large betatron-amplitude fall out of FEL resonance.
3D charge density
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Focal length due to linear part of space charge forces:

Also: strong longitudinal forces if bunches are short, see later…

Electron beam carries its own focusing system, difficult to control! 

BUT:
talk by K.J. Kim TUBAU05

Need small electron beam emittance and kA-peak current.

talk by G.Stupakov MOCAU05
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εn, initial  = 2 mm mrad.
I = 0, 1, 2, 3 kA

Calculation region
380 MeV

10

courtesy
N. Golubeva,
V. Balandin

Transverse space charge effect on optics at FLASH
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How to produce electron beam? 

A) Photoinjector (R. Sheffield/LANL)

laser beamlaser beam

ee-- beambeam

CathodeCathode

Results: 
• PITZ/DESY: Normalized emittance ~ 1.5 mrad mm @ 1nC               

(long pulse trains) 
• LCLS/SLAC: Normalized emittance ~ 0.8 mrad mm @ 1nC 

(single bunch)
Issues:
• Stability of laser pulse (intensity, time profile)
• Damage of photocathode due to laser & electric field

talk by D. Dowell WEAAU01

cf. paper of M.- Ferrario on EPAC06

talk by F. Stephan WEBAU02
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How to produce electron beam? 
B) Thermionic (Shintake/SPring8)
Single CeB6 crystal, 500 kV dc acceleleration
Results: 
• Normalized emittance ~ 0.7 mrad mm @ 1 A dc current
• Excellent stability, very small momentum spread
Issues:
• Complex bunching and compression system

talk by T. Shintake TUBAU02

C) Field emitter arrays (PSI)
Combine array of μm size field emitters with up to 1 MV dc 

acceleration and subsequent rf cavity. 

talk by A. Oppelt TUBAU05

D) Plasma-based sources (Leemans et al.)
Use high long. E-field generated in the wake of laser-generated plasma 

shock wave. 
Issues: Momentum spread, stability, space charge forces
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Emittance during 1.5 hours

• Jitter 2 - 3 % (rms) 
Fitting method, 100% emittance 

Fitting method, 90% emittance 

Tomography, 100% emittance 

Tomography, 90% emittance 

Transverse phase space,
reconstructed by tomography
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current:

273 A

1 nC, 125 MeV

Needs beam observ. screens with 
<10μm resolution

+ large dynamical range & linearity
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Transverse emittance
Question: 
These beams have same rms emittance. 

Is rms emittance the adequate & sufficient way of description?
If not: Need adequate parametrization and optics treatment 

px

x

px

x
Are they really equvalent?
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Short bunch issues

ˆ 50A<I
ˆ 1kA≈I

A) Up to ~100 MeV: 
Space charge absolutely disastrous for

at injector must compress longitudinally at γ >>1

Velocity bunch limited for v ≈ c particles 
magnetic chicane  coherent synchrotron radiation

Derbenev, Saldin, et al.

Magnetic bunch compression

Section
Instrumentation

Section

Tail particle, more momentum
Head particle, less momentum

very powerful microwave radiation
with >~ bunch length if 
bunch length << size of vacuum chamber

λ 

radiation from 
tail goes straight and 
can catch up with head of bunch

A) From FEL point of view

B) From User point of view
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Short bunch issues
Rf error (phase & amplitude)    

errors on momentum, bunch length, bunch arrival time
Stability!! Build feedback for rf phase, using

A) From FEL point of view

• rf probes
• pyrodetectors to measure coherent synchrotron radiation
• synchrotron radiation monitor in dispersive section

Rms phase jitter: 0.07 deg Rms momentum jitter: 1.3×10-4

Result after first compression stage at 125 MeV:

http://ttfinfo.desy.de/TTFelog/data/2005/34/27.08_a/2005-08-27T22:35:30-00.ps
http://ttfinfo.desy.de/TTFelog/data/2007/04/28.01_a/2007-01-28T19:22:30-00.ps
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Long initial 
bunch to reduce 
space charge on 

cathode

sL= 4.4 ± 0.1 ps

Time (ps)
0 10 20 30 40 50

RF gun

Laser 4 - 5 MeV

bunch 
compressor 127 MeVsuperconducting 

TESLA module

12/20 MV/m

bunch 
compressor 380 MeV

1m after 2nd BC1m after 1st BC
~ 20 fs

Short bunch issues: Beam dynamics

Very complicated beam dynamics due to 
coherent synchrotron radiation
Difficult access to relevant parameters
Ultra-short photon pulses created  ~20fs FWHM

before 1st BC
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Beam dynamics simulation tools

Flöttmann Dohlus Borland Reiche
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Bunch Length Measurement:  1. LOLA
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RFRF
‘‘streakstreak’’

SS--bandband

transverse RF deflectortransverse RF deflector

Courtesy P. Emma, 
SLAC

• Deflecting RF structure (S-band) 
from SLAC is used as a ‘streak 
camera’

• Resolution ~ 10 μm

SLAC/DESY 
cooperation

Vy(t)
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Pictures from LOLA
• Three examples for 

different compressor 
settings:
they demonstrate the 
power of the instrument 
in resolving bunch 
structures

• Preliminary calibration 
1.8 fs/pixel
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simulation poster by B. Beutner MOPPH004
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90% core: 1.5 µm

Horizontal phase space slice resolved

courtesy M. Roehrs
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Short bunch issues

coh 1.3 mτ μ≈

coht τ<

1) Make pulse as short as possible: 
small momentum spread helps at compression 
coherence length (“single mode”)

pulse 3 m

B)  From user point of view

FLASH at 13 nm:
τ μ≈ not bad !

Electron diagnostics should be capable to resolve

Angstrom FEL: coh 0.03 mτ μ≈

-- Diagnostics more and more demanding

+ Possibility to produce attosecond pulses
(Saldin et al, Zholents)
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Optical Replica Syntesizer (ORS)
E.L. Saldin et al. Instr. Methods A 539, 499 (2005)

collaboration U Stockholm, U Uppsala, U Hamburg & DESY 

e-Beam
Modulator
vertical polarized

Radiator
horizontal polarized

Chicane
with mirror or OTR

Optical Station I
SEED Laser analysis

Optical Station II
Analyse optical replica with
Grenouille (FROG)

Grenouille

SEED Laser System
-Erbium-doped Fiber Laser 
(775 nm output freqenz doubled)

-Clark CPA2001 amplifier
-For ORS:

- 2ps pulse width
- 0,8mJ pulse energy
- 5-10 Hz rep. Rate
- vertical polarized (s. Modulator)

Telescope
for focussing the laser
into modulator

Polarizer

courtesy                  
J. Boedewadt
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fs diagnostics with THz radiation
Single shot spectrum of coherent infrared radiation exhibits 
structure in the longitudinal density modulation  < 5 μm   

Size of lasing spike

Substructure 
inside spike

courtesy                 
H. Delsim-Hashemi

Need single shot spectrometer for wide IR bandwidth
Recent development at DESY

Pyro electric line detector from individual pyros
+ 30 channels 
+ room temperature
+ no window, works in vacuum
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Correlations SASE – IR power (pyro) 

factor 2 No SASE No SASE

SASE optimum  

SASE IR spectrum

Maximum IR power does NOT 
correspond to max. SASE!

(rather to over-compression) 

Spectral resolved correlation shows
max. SASE (red) whenever there is
LITTLE signal (blue) at 10-20 nm
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Short bunch issues: Timing + Synchronisation

Rf phase jitter translates into arrival time jitter of beam:

measured with electro-optic sampling: 
rms timing fluctuations 200 fs
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talk by B. Steffen WEBAU04

Task:  Measure bunch arrival at ~10 fs precision  �
-- and distribute time stamp over several 100 m!!
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Synchronization needed in a FEL facility

RF gun

photo cathode laser

booster
magnetic
chicane

acc. modules undulator

target

pump-probe laser

~ 100 m – 3 km
Main sources for arrival-time changes of the FEL radiation
• arrival-time of the photo cathode laser pulses
• phase of the RF gun
• amplitude and phase of booster module
• arrival-time of potential seed lasers

seed laser

master clock beam diagnostics

Key Problem: 

rf microwave oscillator is excellent master clock, but long-distance
distribution of rf signals with cables is impossible at fs stability !  
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An all-optical synchronization system

Master Laser
Oscillator

(erbium-doped
fiber laser)

optical length 
stabilized 
fiber links

fiber 
couplers

laser to RF
conversion

low-noise
microwave
oscillator

phase lock 
loop

to low 
level RF

direct use of laser pulses

• synchronization of external
lasers (cross-correlation)

• bunch arrival-time monitors
• beam position monitors
• optical down-converters
• electro-optical methods
• seeding of amplifiers
• …

Berkeley, DESY, ELETTRA, MIT

issues:
Accumulated time jitter of laser

Stability of fiber length

Noise of laser rf converter

talk by H. Schlarb TUBAU01
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Phase noise measurement of
200 MHz soliton laser

Low-frequency drift 
covered by locking
laser to microwave-

oscillator
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Schematic setup of the
fiber-link stabilization

fiber-link end

fast 
actuator:

slow
actuator:

courtesy                 
F. Loehl/DESY
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Verification of  fiber-link stabilization
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Fiber link stabilization

•400 meter stabilized test link in 
Hall 1 at DESY

•Jitter 7.5 fs rms during 12 
hours

•Additional 25 fs rms drift 
during that time

courtesy                 
F. Loehl/DESY
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Laser rf converter

Direct conversion with PD
– temperature drifts
– AM to PM conversion*
– noise limitation due to low power

in spectral line of PD output
– still 10 fs high frequency jitter can be

obtained

~~~
PD BPFlaser pulses

frep f = n*frep

f = n*frep

(*) typical AM to PM conversion: 1-10ps/mW

Sagnac loop
– complex system
– expensive 
+ virtually drift free
+ balanced detection, so AM/PM 

no issue

Several options, e.g. 

better:
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Lasers for FELs

Generic layout of single pass FELs

injector pre-linac main linac
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talk by H. Schlarb TUBAU01
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• X-ray FELs evolved into a major technology 
driver for accelerator R&D.

• There is still a long way to go to fully exploit 
the possiblities of FELs for short wavelengths.

CONCLUSIONS

Thanks to all my colleagues at FLASH 
and to the entire community!

• Many important issues skipped:   
orbit precision, undulator issues, tapering, ERLs, seeding 
techniques, reliability of components, size and costs, …

• Similar challenges on photon diagnostics side
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Synchronization laser

Dispersion managed soliton fiber-laser with artificial saturable absorber
•Fiber stretcher for passive mode locking to RF generator
•Gain medium Erbium, 1550 nm wavelength
•High output power up to ~ 1 nJ (50 mW average)
•Pulse duration ~ 100 fs FWHM
•Repetition rate ~ 50 MHz

locked free running

Polarization control for mode locking

Very low phase noise
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Correlations SASE - short wavelengths - II

0. Order 
long wavelength

35 µm 38 µm 41 µm

44 µm 47 µm 50 µm

53 µm
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First spectra

• single transmission grating
• during SASE conditions (5.10.06)

• single reflective grating
• during SASE conditions (20.8.06)

See poster by 
Hossein Delsim-Hashemi 
during this workshop
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