

Technological Challenges Towards Short-Wavelength FELs

Jörg Rossbach University of Hamburg & DESY

Past, Presence, Future, ...

Basic FEL requirements

No good mirrors at short wavelengths \rightarrow FELs <u>must operate in high-gain mode</u> power gain length (1D): $L_{G} = \frac{1}{\sqrt{3}} \left(\frac{I_{A} \gamma^{3} \sigma_{r}^{2} \lambda_{u}}{4\pi \cdot \hat{I} \cdot K^{2}} \right)^{\frac{1}{3}} \propto \frac{\gamma_{res}}{(n_{e})^{\frac{1}{3}}} BUT:$ talk by K.J. Kim TUBAU05

3D charge density

Particles with large betatron-amplitude fall out of FEL resonance.

 \rightarrow Need small electron beam emittance <u>and</u> kA-peak current.

Focal length due to linear part of space charge forces:

$$f \approx \frac{ec}{r_e} \frac{\overline{\beta}\varepsilon_{norm}}{z} \frac{\gamma^2}{\hat{l}} \approx 10 \text{ m within few meters of drift } z$$

(for
$$\gamma \approx 200$$
, $\overline{\beta} \approx 10$ m, $\varepsilon_{norm} \approx 2 \times 10^{-6}$ m, $\hat{I} \approx 1$ kA)

Electron beam carries its own focusing system, difficult to control!

Also: strong longitudinal forces if bunches are short, see later...

FEL 2007

Transverse space charge effect on optics at FLASH

10

How to produce electron beam?

B) Thermionic (Shintake/SPring8)

talk by T. Shintake TUBAU02

Single CeB6 crystal, 500 kV dc acceleleration

<u>Results:</u>

- Normalized emittance ~ 0.7 mrad mm @ 1 A dc current
- Excellent stability, very small momentum spread <u>Issues:</u>
- Complex bunching and compression system

C) Field emitter arrays (PSI)

talk by A. Oppelt TUBAU05

Combine array of µm size field emitters with up to 1 MV dc acceleration and subsequent rf cavity.

D) Plasma-based sources (Leemans et al.)

Use high long. E-field generated in the wake of laser-generated plasma shock wave.

Issues: Momentum spread, stability, space charge forces

Emittance during 1.5 hours

• Jitter 2 - 3 % (rms)

Fitting method, 100% emittance Tomography, 100% emittance Fitting method, 90% emittance Tomography, 90% emittance

Needs beam observ. screens with <10µm resolution + large dynamical range & linearity

Transverse phase space, reconstructed by tomography

Transverse emittance

These beams have same rms emittance.

Is rms emittance the adequate & sufficient way of description? If not: Need adequate parametrization and optics treatment FEL 2007 7 Jörg Rossbach, Univ HH

Short bunch issues

A) From FEL point of view

B) From User point of view

A) Up to ~100 MeV:

Space charge absolutely disastrous for $\hat{I} \approx 1 \text{kA}$

 $\rightarrow \hat{I} < 50 \text{A}$ at injector \rightarrow must compress longitudinally at $\gamma >>1$

Velocity bunch limited for $v \approx c$ particles

 \rightarrow magnetic chicane \rightarrow coherent synchrotron radiation

Magnetic bunch compression

Derbenev, Saldin, et al.

very powerful microwave radiation with λ >~ bunch length if bunch length << size of vacuum chamber

Short bunch issues

Rf error (phase & amplitude)

- \rightarrow errors on momentum, bunch length, bunch arrival time
- → <u>Stability</u>!! Build feedback for rf phase, using
 - rf probes
 - pyrodetectors to measure coherent synchrotron radiation
 - synchrotron radiation monitor in dispersive section

Result after first compression stage at 125 MeV:

9

Rms phase jitter: 0.07 deg

Rms momentum jitter: 1.3×10⁻⁴

Short bunch issues: Beam dynamics

F

Beam dynamics simulation tools

more investigations

Bunch Length Measurement: 1. LOLA

Pictures from LOLA

- Three examples for different compressor settings: they demonstrate the power of the instrument in resolving bunch structures
- Preliminary calibration
 1.8 fs/pixel

simulation

Horizontal phase space slice resolved

Horizontal phase space slice resolved

 Make pulse as short as possible: small momentum spread helps at compression coherence length ("single mode")

FLASH at 13 nm:

$$\tau_{\rm coh} \approx 1.3 \mu {\rm m}$$

 $\tau_{\rm pulse} \approx 3 \mu {\rm m}$ not bad !

Electron diagnostics should be capable to resolve $t < \tau_{\rm coh}$

Angstrom FEL: $\tau_{coh} \approx 0.03 \mu m$ -- Diagnostics more and more demanding + Possibility to produce attosecond pulses (Saldin et al, Zholents)

FEL 2007

Jö Courtesy

J. Boedewadt

fs diagnostics with THz radiation

Single shot spectrum of coherent infrared radiation exhibits structure in the longitudinal density modulation $< 5 \mu m$ Need <u>single shot</u> spectrometer for wide IR bandwidth

Correlations SASE – IR power (pyro)

Short bunch issues: Timing + Synchronisation

Rf phase jitter translates into arrival time jitter of beam: expect: $\Delta \varphi \ge 0.07 \deg \iff \Delta t \ge 150 \text{ fs}$ measured with electro-optic sampling: rms timing fluctuations 200 fs

Task: Measure bunch arrival at ~10 fs precision -- and distribute time stamp over several 100 m!!

Synchronization needed in a FEL facility

Main sources for arrival-time changes of the FEL radiation

- arrival-time of the photo cathode laser pulses
- phase of the RF gun
- amplitude and phase of booster module
- arrival-time of potential seed lasers

Key Problem:

rf microwave oscillator is excellent master clock, but long-distance distribution of rf signals with cables is impossible at fs stability !

FEL 2007

Phase noise measurement of 200 MHz soliton laser

Jörg Rossbach, Univ HH

Schematic setup of the fiber-link stabilization

Verification of fiber-link stabilization

FEL 2007

Fiber link stabilization

27

•400 meter stabilized test link in Hall 1 at DESY

•Jitter 7.5 fs rms during 12 hours

•Additional 25 fs rms drift during that time

Laser \rightarrow rf converter

Several options, e.g.

Direct conversion with PD

- temperature drifts
- AM to PM conversion*
- noise limitation due to low power in spectral line of PD output
- still 10 fs high frequency jitter can be obtained

(*) typical AM to PM conversion: 1-10ps/mW

better:

Sagnac loop

- complex system
- expensive
- + virtually drift free
- + balanced detection, so AM/PM no issue

Lasers for FELs

talk by H. Schlarb TUBAU01

Generic layout of single pass FELs

- Many important issues skipped: orbit precision, undulator issues, tapering, ERLs, seeding techniques, reliability of components, size and costs, ...
- Similar challenges on photon diagnostics side
- X-ray FELs evolved into a major technology driver for accelerator R&D.
- There is still a long way to go to fully exploit the possiblities of FELs for short wavelengths.

Thanks to all my colleagues at FLASH and to the entire community!

Layout of laser based synchronization

See also: A. Winter TUPCH028/TUPCH029, talks: Kim THOPA03, F.Löhl THOBFI01

Synchronization laser

Dispersion managed soliton fiber-laser with artificial saturable absorber

- \cdot Fiber stretcher for passive mode locking to RF generator
- ·Gain medium Erbium, 1550 nm wavelength
- ·High output power up to ~ 1 nJ (50 mW average)
- Pulse duration ~ 100 fs FWHM
- Repetition rate ~ 50 MHz

Polarization control for mode locking

FEL 2007

Jörg Rossbach, Univ HH

First spectra

