

4GLS: A Facility for the Generation of High Brightness, Variably Synchronised Sources from THz into the XUV

Jim Clarke, ASTeC, Daresbury Laboratory on behalf of Brian McNeil and All of the 4GLS Design Team

The 4GLS Concept

4GLS combines superconducting ERL, short pulse SR, lasers and FELs in a fully integrated, multi-source, multi-user facility

High Average Current Loop

100mA, **550 MeV**, 2 mm mrad normalised emittance

1.3 GHz, 77 pC, CW

Undulator sources and VUV-FEL

Progressive compression, ~1 ps to 100 fs

XUV-FEL Branch

1 nC, **750 MeV**, 2 mm mrad normalised emittance, 1 kHz, 1.5 kA

2 Branches

IR FEL

Simultaneous Operation

Short pulses and combined sources are key to 4GLS

Main Parameters

Bunch Parameter	XUV-FEL	100 mA HACL Operation	VUV-FEL HACL Operation	IR-FEL	
Electron Energy	750 MeV	550 MeV	550 MeV	25 to 60 MeV	
Normalised Emittance	2 mm mrad	2 mm mrad	2 mm mrad	10 mm mrad	
RMS Projected Energy Spread	0.1 %	0.1 %	0.1 %	0.1 %	
RMS Bunch Length	< 270 fs	100 to 900 fs	100 fs	1 to 10 ps	
Bunch Charge	1 nC	77 pC	77 pC	200 pC	
Bunch Repetition Rate	1 kHz	1.3 GHz	n x 4.33 MHz	13 MHz	
Electron Beam Average Power	< 1 kW	55 MW	n x 183 kW	156 kW	

XUV FEL Layout

	W2 min gap 9mm				W1 min gap 9mm			
	Туре	Period	No.	Length	Туре	Period	No.	Length
FEL A 8 – 40eV	APPLE-II	51 mm	3	2.5m	Planar PPM	46mm	3	2.5m
FEL B 35 -100eV	APPLE-II	35 mm	4	2.5m	Planar PPM	31 mm	4	2.5m

Example, 100eV FEL B

VUV-FEL

- 3 to 10 eV, ~500MW output
- Regenerative Amplifier system
- 4.33 MHz compared with 1 kHz XUV FEL
- Very tolerant to mirror degradation
- Reflectivity only 40 to 60% needed
- No seed
- 300 A peak current

3D Time Dependent Simulations: Genesis/OPC

Optimisation of Cavity Parameters

 Scans using Genesis/OPC of hole radius, mirror reflectivity and cavity geometry (changing mirror ROC to adjust waist radius and position of fundamental cold cavity mode).

• Example: Hole Radius vs Reflectivity:

- Output power relatively INSENSITIVE to reflectivity
- Reflectivity REDUCTION gives small power INCREASE
- Consistent with 1D simulations used during CDR

RAFEL Sensitivity to Cavity Geometry

R & D Studies

- In preparation for 4GLS we have constructed a prototype ERL
- In addition to this we have started the construction of a prototype SC linac suitable for CW-mode operation
- We are also actively designing a high average current photoinjector capable of 100mA operation

ERLP: All the major components of a 4th Generation ERL driven FEL

Designed, procured, assembled, installed and being commissioned

Achievements so far

- Beam energy 350 kV (spec value)
- Maximum voltage achieved 450 kV
- Bunch charge 11 pC (ultimate target 80 pC)
- Quantum efficiency measured in the gun 1.2%, measured in the lab 3.5% (ultimate target ~few percent)
- Bunch train length 100 µs (spec value)
- Train repetition rate 20 Hz (spec value)
- All other components installed
- Cryosystem commissioned for 2K
- High Power RF conditioning underway

ERL Accelerator Cryomodules

- ILC Cryomodules are not suitable for high average current ERL operation
 - HOMs need to be reduced
 - CW Input power capability needs to be increased
- Collaboration established to develop a prototype cryomodule
 - Daresbury, Cornell, Stanford, Rossendorf, and Berkeley
- Design requirements:
 - → E_{acc} > 20 MV/m @ Q_o > 10¹⁰
 - → Couplers capable of up to 25 kW CW
 - Large HOM damping capability
- The 2-cavity cryomodule will be validated on ERLP and later Cornell ERL injector.

Major changes

- Cavity changed from 9 cell to 7 cell
- New HOM absorbers installed between cavities
- High power (CW) couplers installed

Cryomodule Evolution

Cryomodule to be ready for beams tests on ERLP by Q4 2008. Cryomodule to be ready for beam tests on Cornell ERL injector by Q4 2009.

Summary

- 4GLS Design continues to be refined
- Technical Design phase is underway (CDR published 2006)
- Major R & D activities also ongoing in parallel
 - → ERLP being commissioned
 - → CW cryomodule being constructed
 - High average current photoinjector being designed