

THE ARC-EN-CIEL PROJECT

M. E. Couprie, M. Labat, G. Lambert, O. Chubar, A. Loulergue, C. Bruni, C. Benabderrhammane, O. Marcouillé, Synchrotron SOLEIL; L. Giannessi, ENEA

Acknowlegments :

J. M. Filhol, P. Morin, D. Raoux, J. C. Denard, C. Herbaux, P. Marchand, M. Louvet, L. Nadolsky, L. Nahon, A. Lestrade, C. Miron, M. Idir Synchrotron SOLEIL; D. Garzella, M. Jablonka, A. Mosnier, F. Meot, M. Belakhovsky, B. Gilquin-CEA;

EUROFEL EU Contract

MOTIVATION AND STRATEGY

FEL History in France :

ACO (1983-87), Super-ACO (1989-2003), CLIO (1992-) First pump-probe two-color experiments using UV FEL and synchrotron radiation (1994) Coherent Harmonic generation (100 nm in 1991!)

Aim :

Build a Multi-color radiation with I keV FEL source for user applications High repetition rate => Superconducting accelerator

FEL physics concept :

Exploit harmonic generation and seeding schemes

Choice of the seeding source : High Harmonics produced in Gas (HHG) -> Improved coherence and compactness, reduction of intensity fluctuations Expertise in France in HHG (CEA-SPAM, LOA, CELIA) Close synergy between FEL and conventional laser community in the same facility

Strategy :

- demonstrate seeding with HHG (coll SCSS, SPARC),
- acquire expertise on seeding with a kHz Ti-Sa laser on a SRFEL odd/even harmonics, planar/ helical undulator (coll. UVSOR)
- modular approach for ARC-EN-CIEL FEL 07, Novosibirsk, 07 Aug. 31

ARC-EN-CIEL

Accelerator Radiation Complex for ENhanced Coherent Intense Extended Light

ARC-EN-CIEL: BRILLANCE

Phase I : 220 MeV, LELI, adjustable polarisation : 300-30 nm

Modulator : U26, NI=200, Radiator : HU30, N2=700

Phase I': 800 MeV, LELI: 300-3 nm

Phase I': 800 MeV, LELI: 300-3 nm

Phase 2 :

I GeV, LELI : 200-1.5 nm, LEL2 planar pol. : 10-0.5 nm low average current mode, high peak current operation

Modulator : U26, NI=500, Radiator : U18, N2=1000

Phase 3B1 : low <I> mode : I GeV, LEL1 : 200-1.5 nm, LEL2: 10-0.5 nm high <I> mode : I GeV, LEL3 planar to helical : 40-8 nm, HU30 spontaneous radiator

LEL3 : HU30, NI=350, SpontaneousRadiator : HU30

Phase 3B2 : low <I> mode : I GeV, LELI : 200-1.5 nm, LEL2: 10-0.5 nm, LEL4 : 3 GeV, 2-0.2 nm high <I> mode :

I GeV, LEL3 : 40-8 nm, HU30 spontaneous radiator 2 GeV : 6 U20 spontaneous radiators

ARC-EN-CIEL: INJECTORS

Low average current mode High average current mode <I>=I-10 µA, I nC, I-10 kHz <I>=I-100 mA, I-1300 MHz, 0.I-1 nC

ARC-EN-CIEL: LINAC

ARC-EN-CIEL: PRE-ACCÉLÉRATION

Laser : spatial and temporal shape Gun : space charge, RF curvature, emittance compensation, thermal emittance Cavities : wakefield, RF curvature Compressor : CRS, optical aberrations

phase I : peak current 800 A, slice energy spread : 0.05%, emittance at centre : I.4 π rms μ m.rad, pulse duration 300 μ m (600 fs RMS)

ARC-EN-CIEL: BEAM DYNAMICS

Example : ARC-EN-CIEL Phase 2, 10 cryomodules

ARC-EN-CIEL: BEAM DYNAMICS

ARC-EN-CIEL Phase 3, ERL loops at 1 and 2 GeV

ARC-EN-CIEL: BEAM DYNAMICS Exemple : ARC-EN-CIEL Phase 3, Loops

Threshold current (BBU) = 544 mA@IMHz

ARC-EN-CIEL: BEAM PARAMETERS

Phase	1	2	3,	3,	3
			mode 1	mode 2	
Energy	0.2	1	1-2	1-2	3
(Gev)					
Rep. rate	1-10	1-10	10^3 –	10^3 –	1
(kHz)			10 ⁵	10^{5}	
Charge	1	1	0.2//1	0.2//1	0.75
(nC)					
$\Delta T(fs rms)$	500-	200-	500-	500-	200
	600	300	600	600	
(μA)	1-10	1-10	$10^3 - 10^5$	$10^3 - 10^5$	
I _{peak} (kA)	0.8	1.5	0.2	1	
I _{peak,slice} (kA)	1	2	1	1	1.5
$\epsilon_{tot}(\pi mm$	2.4	1.6	2	6	
mrad)					
ϵ_{slice} (π mm	1	1.2	1	5	1.2
mrad)					
$\sigma_{\gamma}/\Upsilon_{tot}$	0.1	0.1	0.1	0.2	
(%rms)					
$\sigma_{\gamma}/\Upsilon_{\rm slice}$	0.04	0.04	0.04	0.08	0.02
(%rms)					

ARC-EN-CIEL: OPERATION MODES

Operation with different beams from the two guns

ARC-EN-CIEL: LASER SYSTEM

Laser for gun I and LELI, LEL2 and LEL4:

- Ti-Sa laser
- Er-crsytal oscillator
- post-shaphing with a UV DAZZLER (Faslite)
- UV regenerative amplifier (Ce:LICAF)

Laser for gun 2:

Er-fiber oscillator

ex FCPA µJEWEL D-400 IMRA Americavaraible rep rate 1045 nm 400 mW average power rep. rate 0.5 MHz

Lab. activity Phlam Institut d'Optique (RTRA)

Timing:

- atomic clock
- transfer of fs timing via fibers

ARC-EN-CIEL: INJECTION WITH HHG

FII

SYNCHROTRON

ARC-EN-CIEL: INJECTION WITH HHG

HHG: SPECTRAL RANGE

Z. Chang et al, PRL 79, 1997, 2967 Gibson, Science, 2003. Seres et al, Nature 2005

Water window (Ti:Sa 26 fs, 2.7 nm (460 eV) He, 5.2 nm (239 eV) Ne)

Tuneability : • Tuning the laser wavelength:

Ti-Sa tuneability : Δλ/λ=1-0.1% Full tunability from 220 nm to 8 nm with 1.1 to 1.6 µm pump (Ti:Sa + OPA) Chang et al..Phys. Rev. A 65 (2001)011804• frequency mixing Generating with w₁ fixed and w₂ tunable:

~70% tunability from 180 to 18 nm with Ti:Sa + OPG Gaarde et al., J. Phys B 29, L163 (1996)

• Adjusting the laser energy and chirp Kim et al., PRA 67 (2003)

HHG TEMPORAL COHERENCE

Temporal structure : as structure in fs envelop

Spectral domain:

as : harmonic train fs : single harmonic quadratic phase

H17 (47 nm) With 60 fs-1 mJ IR pulse in Argon

Merdji et al., Phys. Rev. A 74 (2006)

Y. Mairesse et al, Science 302, 1540 Sola et al., Nature Physics (2006) Baltuska et al Nature 421 (2003)

HHG TRANSVERSE COHERENCE

Opt. Lett. 27, 2000, 1920 Phys. Rev A 68, 2003, 023808 Y.Tamaki et al, JJAP 40, 2001, L1154

Le Déroff et al., Optics Lett. 23 (1998)

HHG SEEDING DEMONSTRATION EXPERIMENTS

Collaboration SPring-8: seed@60 nm

Prototype SCSS

Collaboration SPARC seed@266, 190 nm, HGHG, cascade? (EUROFEL, DS4)

SPARC (EUROFEL)

ARC-EN-CIEL: UNDULATORS

III Constituting elements : undulators

ARC-EN-CIEL: UNDULATORS modulator

In vacuum U26 Phase I: 200 périodes Phase 3: 400 périodes

Hybrid: SM₂CO₁₇, Vanadum Permendur

Gap = 5.5 mm, SmCo17 (50,7.5,30) VP (33,2.5,22) Nper = 98 $B_0 = 0.96$ T K= 1.8

ARC-EN-CIEL: UNDULATORS APPLE-II radiator

HU30, 9 à 12 m

LELI : accessible range versus the energy

E (Gev)	U26	Polarisation linéaire Apple II plan HU30	Polarisation circulaire Apple II hél. HU30
220	75-500	100-500	100-600
330	25-220	42-220	50-250
500	15-95	20-80	37-220
750	7-42	8-40	15-55
1000	23-4	3-24	5-30
2000	6-1	1-6	2-7

ARC-EN-CIEL: UNDULATORS Short period in vac ID

T. Hara et al. PRST, J. Chavanne, C. Kitegi- ESRF, K. Tanabe BNL FEL 07, Novosibirsk, 07 Aug. 31

ARC-EN-CIEL: UNDULATORS

FEL	Туре	$\lambda_{\rm o}$	K _{max}	Gap _{mi}	Length
		mm		n	(m)
LEL1-M	In vac	26	3.2	3.5	5.2
LEL1-R	Apple-II	30	P:2.16	10	21
			H:1.5	8	
LEL2-M	In vac	26	3.2	3.5	13
LEL2-R	In vac*	18	3.1*	3.7	9
LEL3	Apple-II	30	P:3.36	6	10.5
			H:1.5	8	
LEL4-M	In vac *	35	4.8	3.5	24.5
LEL4-R	In vac *	18	3.1*	3.7	18
VUV	Apple-II	30	P:1.1	15.5	2
			H:0.7		
X	In vac	20	1.9	5.5	2x6

FEL SOURCES CALCULATIONS

PERSEO SS/TD- GENESIS SS-TD coupled to SRW- Ff=0.1

See O. Chubar's talk

injection at 160 nm pour AEC PI

1.5 kA, 1 GeV, 0.04% 1.2 pi, 0.06 mm, 0.75 nC, E=0.5-1 GeV Und1 : period 2.6 cm, Ff=0.1, Und2 period 3 cm,Config 1-1 and 1-3

GENESIS inclus dans SRW, cas d'AEC PI

SPECTRAL RANGE COVERED BY THE HHH SEEDED LELI, LEL2, LEL4

• Cryogenic undulators in series

0.2 1.2 1.4 0.4 0.81.0 0.6Wavelength (nm)

0.0

LONGITUDINAL DYNAMICS Case LELI@I GeV : Seed 12.3 nm, 50fs, 30 kW, conf 1-1, PERSEO TD

LONGITUDINAL DYNAMICS

Standard case Case LELI@I GeV : Seed 12.3 nm, conf 1-1 PERSEO TD GENESIS

DYNAMICS- LEL2

0.8-1.2 GeV, configuration 1-3, seed 38-10 nm, 50 fs, 50 kW

2 kA, 1 GeV, 0.04% 1.2 pi, 0.06 mm, 0.75 nC Und1 : period 2.6 cm,Und2 period 1.8 cm, Dispersive section R56=1.5 µm, Nd=130

Seed 38 nm

DYNAMICS- LEL2

ELI seed 12.3 nm, conf I-I

SYNCHROTRON

TOLERANCES : SENSITIVITY TO EMITTANCE GENESIS PERSEO TD ^{conf I-3}

LEL2 config I-3 : sensitivity to energy spread

Time (fs)

LEL2 config I-3 : sensitivity to peak current

LEL2: study vs spectral tuning

seed 14 nm, 30 kW, config. 1-3

 λ seed- λ res=-0.33 nm, non symetrical e. start to escape from separatrix (lower energies)

Radiator

Time (fs)

 $\Delta T=183$ fs, the pulse moves further backwards

e bunch 200fs rms, laser 100 fs FWHM, Seed 14 nm, conf 1-3

ARC-EN-CIEL: RADIATION FROM P3

FEL oscillator

Optical cavity:

- cavity length 32 m, 4.5 MHz

waist minimizing the mode volume along the interaction

 $\omega_o = \sqrt{L_{ond} \lambda / 2\pi \sqrt{3}}$

=> cavity length 32 m, 4.5 MHz

waist minimizing the mode volume along the interaction

Rc= 16 and 20 m taken

- hole extraction : 10 % efficiency
- 2 kW maximum power absorbed cryogenics cooling (cf SOLEIL beamlines)
- deformable mirror

=> further analysis with a longer resonator model of cooling

Planar configuration : 40-26 nm (0.8-1.2 GeV), peak power 15-100 MW, average power 50-150 W (low Q) 200-400 (high Q)
Helical configuration: 13-8 nm, peak power 7-70 MW,/ 20-120 MW average power 30-300 W (low Q) 100-600 (high Q)

L1

IV-ARC-EN-CIEL light source performances : FELs

ARC-EN-CIEL: RAYONNEMENT THz Radiation

aimant 17° B=0.165 T r=2 m L1 = 2 m

ARC-EN-CIEL: RADIATION FROM P3

Undultaors in spontaneous emission on the ERL loop pulse duration <1 ps

ARC-EN-CIEL: THZ RADIATION O. Chubar

Phase 2 (edge radiation@ITHz) Phase 3 (edge radiation@ITHz) FEL 07, Novosibirsk, 07 Aug. 31

CONCLUSION

Experimental demonstration od seeding with HHG, in coll with SCSS team => confidence in our scheme

French roadmap on Large Scale Facilities ARC-EN-CIEL CDR to be submitted

Next step :TDR, according to the result of the French roadmap and R&D in parallel

TEMPORAL PROFILES

DYNAMICS- LEL2

Seed 12 nm, conf 1-1, 50 kW Dependance versus the pulse seed duration

DYNAMICS- GENESIS CALCULATION

Standard case Case LELI@I GeV : Seed 12.3 nm, conf I-I

ARC-EN-CIEL: SYNCHRONISATION

System of frequency stabilisation dof the Ti:Sa oscillator with a reference given from an atomic clock

Under study in CEA- EUROFEL see poster O. Gobert

Fiber transmission

3 GeV BRANCH, seed 4 nm, 100 kW, 10 fs

After Modulator

HI@4 nm, 0.06 μJ, 5 fs rms, 0.028%

After Radiator

HI@0.8 nm, 60 nJ, 5 fs rms <u>H3@0.26</u> nm <u>H5@0.16</u> nm

Further analysis on transverse coherence

1.5 kA, 3 GeV, 0.02% 1.2 pi, 0.06 mm, 0.75 nC Und1 : period 3.5 cm, K1=6 (4), N1=200 (seed 10 nm) - 400 (seed 4 nm), Beta =2.6 m,Ff=0.1 Und2 period 1.8 cm, K2=3.6 (2.73), Lambda2=1.9 nm, N2=1000, Beta =2.6 m, Ff=0.1

Config 1_5, Dispersive section R56=5e-4,0Nd=130rsk, 07 Aug. 31