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Abstract

The explicit solution of the initial value problem for a
SASE FEL operating with a large ratio of electron beam
emittance to the wavelength, ¢ = 2me/\ > 1, ispresented.
The degree of transverse coherence is explicitly calculated,
too. It is shown to be dependent on the ratio of the number
of FEL gain lengths to the parameter ¢. In particular, in the
multi-mode limit the radiation from a SASE FEL has by
the squared number of gain lengths higher degree of trans-
verse coherence than a synchrotron radiation generated by
a beam with the same emittance.

INTRODUCTION

Free electron lasing at wavelengths shorter than ultra-
violet can be achieved with a single-pass, high-gain FEL
amplifier. Due to a lack of powerful, coherent seeding
sources short-wavelength FEL amplifiers work in so called
Self-Amplified Spontaneous Emission (SASE) mode when
amplification process starts from shot noise in the electron
beam [1, 2, 3]. The first VUV FEL user facility FLASH
("F'ree-Electron-"LAS’er in "H"amburg) [4, 5] operates
in SASE mode and produces GW-level, laser-like radiation
pulses with 10 to 50 fs duration in the wavelength range
13-45 nm. Present level of accelerator and FEL techniques
holds potential for SASE FEL s to generate wavelengths as
short as0.1 nm[6, 7, §].

The condition ¢ < 1/2 is often formulated as necessary
one for an optimal design of a SASE FEL. It is meant that
under this condition the radiation from SASE FEL has a
full transverse coherence. However, as it is shown in [9],
the maximal degree of transverse coherence (and brilliance
aswell) is achieved at ¢ ~ 1. For smaller emittances the
degree of transverse coherence decreases due to the effect
discovered in [10]. Moreover, the above mentioned con-
ditionis strongly violated in the project parameters of hard
X-ray FELS[6, 7, 8]: therethe parameter ¢ isin therange 2-
5. Even without discussing exotic proposals [11, 12], one
can notice a general trend towards lower energies of the
electron beam, i.e. cost-saving solutions. Since achievable
normalized emittance e is limited by beam physics and
technology issues, this would lead to a further increase of
é€. Thus, theoretical understanding of properties of a SASE
FEL, operating in this regime, becomes practically impor-
tant. In this paper we present the main results of the the-
oretical analysis performed in Ref. [13] dealing with the
limit € > 1.
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EIGENVALUE EQUATION

Let us have at the undulator entrance a continuous elec-
tron beam with the current I, with the Gaussian distribu-
tion in energy

P& - &) = (n((88) e (R )

D

and in atransverse phase plane
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the sameiny phaseplane. Here ks = 1/ isthe wavenum-
ber of betatron oscillationsand o = /¢€/5.

Using cylindrical coordinates, in the high-gain limit we
seek the solution for a slowly varying complex amplitude
of the electric field of the electromagnetic wave in the form
[14]:

E(z, 7,0) X Pp (1) exp(Az)eii"‘P7 (©)]

where n is an integer, n > 0. For eachn > 0 there are
two orthogonal azimuthal modes and many radial modes
that differ by eigenvalue A and eigenfunction ®,,,,,(r). The
integro-differential equation for radiation field eigenmodes
[15, 16, 17] can be written in the following normalized
form:
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where I,, is the modified Bessel function of the first
kind. The following notations are used here: A = A/T,
7 = r/(0v2), B = 20%Tw/c is the diffraction pa-
rameter, kg = kg/I" is the betatron motion parameter,

: (4)
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A2 = ((A&£)?)/(p*E?) is the energy spread parame-
ter, C' = [kw —w/(2¢y2)] /T is the detuning parame-
1/2
ter, I' = {A%110w292 (Iac?~2 )71} / is the gain fac-
tor, p = ¢y2T'/w is the efficiency parameter w is the
frequency of the electromagnetic wave, 0s = Kims/7,
K isthermsundulator parameter, « isrelativistic factor,
v 2% =472 +62, k,, istheundulator wavenumber, I, = 17
kA isthe Alfven current, Aj; = 1 for helical undulator and
Ayy = JO(Krms/Q(l + Krzms)) Ji (Krms/2(1 + KerS))
for planar undulator. Here J, and J; are the Bessel func-
tions of the first kind. Note that the efficiency parameter p
isrelated to the corresponding parameter p [18] of the one-
dimensional mode! as follows: 5 = pB'/3. The equation
(4) can be reduced to the integral equation by means of the
Hankel transformation [17] and then solved numerically.
Effects of emittance play the dominant role in X-ray
FELs. In this paper we will mainly concentrate on the case
when beta-function is optimized for the highest FEL gain
as it happens in practice. Since diffraction parameter de-
pends on beta-function, it is more convenient to go over
to the normalized parameters other then those introduced
above. Indeed, diffraction parameter can be rewritten as
B = 2¢/kg, where é = 27e/ . Then we can go from pa-
rameters (B, k) to (¢, kg). In the following we will con-
sider the case when ¢ >> 1, the energy spread effect can be
neglected, and the beta-function is optimized for the maxi-
mum growth rate. We apply the variational method [17, 19]
to the Eq. (4) with the trial functions [13]

B (7) = 7" exp(—ar?)L" (2a7?) , (5)

where L7, are assotiated Laguerre polynomials. Solving
the obtained equations[13], wefind the zeroth-order eigen-
value

A 0.3695 4 0.2735i
AO ~ B ' (6)

for the optimal betatron wavenumber ks ~ 0.503/¢2 and
at the optimal detuning C\; ~ 0.391/¢. The diffraction
parameter for this operating pointis B ~ 3.98 ¢3. Thenwe
find [13] the next order correction (in é~1) to the eigenval ue

A~ Ao — (14 n+ 2m)(0.3080 + 0.0988 1)

> ()

€

and the mode parameter

a~ (0.4355 — 0.51231)¢ . (8)

Egs. (5), (7) and (8) are the solutions for field distribu-
tions and growth rates of eigenmodes of a high-gain FEL
with optimized beta-function in the limit € > 1. We com-
pared these asymptotical solutions with the exact solution
[17] at the optimal detuning for different modes and found
agood agreement for € > 1.
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Concluding this section, we should analyze some scal-
ing relations. The FEL gain length in the case under con-
sideration scales as L, = (Re AoI')~! o ¢/T", while the
beta-function as 5 = kgl o €2/T. In other words, the be-
tatron phase advance per gain length, kgL, is of the order
of é~1. The size of aradiation mode scalesasé~'/2, and a
typical change of transverse coordinates of particles during
the passage of one gain length as ¢! in units of the elec-
tron beam size. Therms size of the intensity distribution of
afundamental mode (withn = m = 0) can be expressedin

dimensional unitsaso,qq >~ 1.07/BA/(27) ~ 0.92, /€L,

for the optimal beta-function.

INITIAL VALUE PROBLEM

The solution of initial value problem for a SASE FEL
with aparalle electron beam, accounting for diffraction ef-
fects, was obtained in [15, 20]. Initial value problem, that
also includes emittance effect, was solved in [21, 22, 23]
in a general form and then approximated in single-mode
limit. Here we present an explicit solution [13] for alarge
emittance, ¢ > 1, and the optimal (for the growth rate)
focusing, I%ﬁ ~ (0.503/é2. The normalized output power
(normalized FEL efficiency) in high-gain linear regime can
be expressed as[13]:

f= Z ~ 0.0755 exp(2N ) ©

N2\ /Ny [f (Ng/€) —1]
where ) is the ratio of the radiation power to the electron
beam power, N, = Re Aoz = 0.3695%/¢ is the number of
field gain lengths within a given undulator length, z = Iz,
N, = I/(ewp), and the function f is given by

f (J\f‘q> = 0.419 cosh (1.667%)
é €

N,
+0.581 cos (0.535%) }
€

(10)

Note that parameter p for the given operating point is re-
lated to the corresponding one-dimensional parameter [18]
asp = B'/3p ~ 1.58ép.

The expression (9) is valid when € > 1 and N; > 1,
but the ratio IV, /¢ may take any value!. In particular, for a
sufficiently long undulator, Ny > é > 1, the fundamen-
tal TEM, gives the dominating contribution to the total
power. In this case Eq. (9) reads

0.360
N 62\/
030 onm).

N2, /N

1in practice the maximal value of N, is limited by saturation effects
that are not considered in the linear theory presented here. For any reason-
able set of parameters N, < 10 inlinear regime of SASE FEL operation.

p[2N,(1 — 0.834/¢)]

3>

(11)
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where Ngo ~ N, is the number of field gain lengths for
the TEMgo mode. This solution is identical to that given
in [23], taken in the limit ¢ > 1 with the optimal beta-
function, and integrated over FEL frequency band. Now
let us consider the multi-mode limit, é > N, >> 1. In this
case the radiation power (9) is expressed as

0.151
) ~ ————exp(2N,) .
N.N2/? I

(12)

Relative partial contributionsto thetotal power of modes
with an azimuthal index n can be calculated as follows
[13]:

for n=0 (13)

_ 0 T =1
UV s Ty T

For n > 0 we consider the sum of the contributions of
the two independently excited azimuthal modes with the
angular dependence exp(+ing). The contribution of the
azimuthal-symmetric mode goes pretty linearly for v, <
€.

for n>0 (14

Ny

Po = 05

M>

and asymptotically approaches unity when N, >> €. Other
modes have maxima of which locations can be found from

the equation
N, n?+1
1(7)-

Maxima partial contribution of n—th azimuthal mode in
linear regime of SASE FEL operation is given by

20" (vVnZ +1 —n)
(Vn2+1+1)"

For instance, apossible contributionislimited by 34.3% for
n = 1, by 18.0% for n = 2, etc. For large n a maximum
islocated at N, /é ~ n~' and takes the value max(p,,) ~
(ne)~1, e being the base of natural logarithm.

Especialy simple relation for the partial contributions
of azimuthal modes can be deduced for the point where
po = p1. Therewe have:

max(p,) = for m>0 (15)

1 1
30 PnTonye
Note that the results (15) and (16) are universal since they
do not depend on a specific choice of the function f.
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DEGREE OF TRANSVERSE COHERENCE

The definition of a degree of transverse coherence was
introduced in [9]:

= J S (P, ) PAIFE)) (L)) dFLd iy
[J(I(FL)) diL]? ’
17
where (7)) = |E(7.)|? isthe radiation intensity,
G <E(mEj(M)> (18)

1/2

is the transverse correlation function, E is the slowly vary-
ing amplitude of the electromagnetic wave, and < ... >
means ensemble average. The definition (17) is valid for
any stationary (or quasi-stationary [14, 24]) random pro-
cess, in particular for the radiation from a SASE FEL with
along electron bunch [14] operating in linear and nonlinear
regimes.

The radiation of a SASE FEL, operating in the linear
regime, holds properties of a completely chaotic polarized
light [14, 24]. In this case, as it was shown in [9], the defi-
nition (17) is equivalent to that given by the variance of the
instantaneous power [10, 14]:

< (P-<P>)?>
< P >2
where P = [ I(7,)dr,. The degree of transverse coher-

ence ¢ can be thought of as an inverse number of transverse
modes[9, 10, 14]:

; (19)

2
(=o0p=

1

¢= My

However, the definitions (17) and (19) cannot be directly

used for the purpose of this paper, namely for analyti-

cal calculations of the degree of transverse coherence of a

SASE FEL. Nevertheless, analyzing the results of numer-

ical simulations in Ref. [9], we found out that the degree

of transverse coherence according to the definition (17) is

well approximated by the squared partial contribution of
azimuthal-symmetric mode:

(20)

¢~pf. (21)

Accuracy of thisapproximation is connected with theresid-
ual effect [10] on transverse coherence originated from the
finite frequency bandwidth of a SASE FEL. Indeed, for a
sufficiently long undulator the only fundamental TEMq
mode survives (other modes are exponentially suppressed),
i.e. perfect transverse coherence would be achieved for a
monochromatic wave. However, the amplitude and phase
distributions of this mode change within the FEL band-
width. As aresult, the degree of transverse coherence ap-
proaches unity as [10]: 1 — ¢ ~ 4,./N, but not exponen-
tially asin (21). A numerical factor ¢, is of the order of
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Figure 1: Degree of transverse coherence versus parameter
N, /é. The asymptotes (24) and (25) are shown as dot and
dash lines, respectively.

one for ¢ ~ 1 [9] and strongly increases in the limit of
small electron beam size. However, for considered here
caseé > 1 wehavefound analytically [13] that §,- ~ 0.026
for the optimal beta-function:

0.026

N, ’
i.e. thiseffectisnegligiblefor large V,. We have seen from
numerical simulations [9] that the relative difference be-
tween (17) and (21) isindeed very small for large € and IV,
in both linear and nonlinear regimes. Thus, despite the def-
inition (21) was introduced heuristically, it is sufficiently
accurate and adequate for our purposes. We rewrite it, us-
ing (13), in amore explicit form

(=~ u .
f+1
The plot of the degree of transverse coherence versus
N, /¢ for the function f from (10) is presented in Fig 1.
For N, > € > 1 the degree of transverse coherence is
close to one:

(~1-—

(22)

(23)

N,
(~1->~1-954exp (1.667%’) ;o (29
€

2
f
but one should keep in mind the residual effect (22). In the
limit € > N, > 1 weget

1 N, \?
or, in dimensional units
1 AN\
=g = (477) : (26)

Amazingly, a numerical factor in front of the last expres-
sionisequal to one (with the accuracy of the order of 103,
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accepted in this paper) for the case of the optimal beta-
function. Note that in the case of synchrotron radiation for
an axisymmetric beam one would have in the limit ¢ > 1
for optimal focusing: ¢ = 1/My ~ (\/4me)®. Thus, the
radiation from a SASE FEL has NV, 3 higher degree of trans-
verse coherence in this limit.

The asymptotes (24) and (25) are plotted in Fig. One
can see that Eq. (25) is pretty accurate for N, /é < 1, and
Eq. (24) - for Ny /€ > 3.

Finally, we present an estimate of the degree of trans-
verse coherence at saturation for the case ¢ > N, > 1.
Number of gain lengths at the end of linear regime (where
the formation of transverse coherence stops) can be esti-
mated [13] as N, ~ 1 In(N,/¢). Thus, using (25) we get:

9= 2
AN 2
In(N./é
Csat ~ ( ( i‘/ )) . (27)
4é
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