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Abstract
The explicit solution of the initial value problem for a

SASE FEL operating with a large ratio of electron beam
emittance to the wavelength, ε̂ = 2πε/λ � 1, is presented.
The degree of transverse coherence is explicitly calculated,
too. It is shown to be dependent on the ratio of the number
of FEL gain lengths to the parameter ε̂. In particular, in the
multi-mode limit the radiation from a SASE FEL has by
the squared number of gain lengths higher degree of trans-
verse coherence than a synchrotron radiation generated by
a beam with the same emittance.

INTRODUCTION

Free electron lasing at wavelengths shorter than ultra-
violet can be achieved with a single-pass, high-gain FEL
amplifier. Due to a lack of powerful, coherent seeding
sources short-wavelength FEL amplifiers work in so called
Self-Amplified Spontaneous Emission (SASE) mode when
amplification process starts from shot noise in the electron
beam [1, 2, 3]. The first VUV FEL user facility FLASH
(”F”ree-Electron-”LAS”er in ”H”amburg) [4, 5] operates
in SASE mode and produces GW-level, laser-like radiation
pulses with 10 to 50 fs duration in the wavelength range
13-45 nm. Present level of accelerator and FEL techniques
holds potential for SASE FELs to generate wavelengths as
short as 0.1 nm [6, 7, 8].

The condition ε̂ < 1/2 is often formulated as necessary
one for an optimal design of a SASE FEL. It is meant that
under this condition the radiation from SASE FEL has a
full transverse coherence. However, as it is shown in [9],
the maximal degree of transverse coherence (and brilliance
as well) is achieved at ε̂ � 1. For smaller emittances the
degree of transverse coherence decreases due to the effect
discovered in [10]. Moreover, the above mentioned con-
dition is strongly violated in the project parameters of hard
X-ray FELs [6, 7, 8]: there the parameter ε̂ is in the range 2-
5. Even without discussing exotic proposals [11, 12], one
can notice a general trend towards lower energies of the
electron beam, i.e. cost-saving solutions. Since achievable
normalized emittance γε is limited by beam physics and
technology issues, this would lead to a further increase of
ε̂. Thus, theoretical understanding of properties of a SASE
FEL, operating in this regime, becomes practically impor-
tant. In this paper we present the main results of the the-
oretical analysis performed in Ref. [13] dealing with the
limit ε̂ � 1.

EIGENVALUE EQUATION

Let us have at the undulator entrance a continuous elec-
tron beam with the current I0, with the Gaussian distribu-
tion in energy

F (E − E0) =
(
2π〈(ΔE)2〉)−1/2

exp
(
− (E − E0)2

2〈(ΔE)2〉
)

,

(1)
and in a transverse phase plane

f(x, x′) = (2πσ2kβ)−1 exp

[
−x2 + (x′)2/k2

β

2σ2

]
, (2)

the same in y phase plane. Here kβ = 1/β is the wavenum-
ber of betatron oscillations and σ =

√
εβ.

Using cylindrical coordinates, in the high-gain limit we
seek the solution for a slowly varying complex amplitude
of the electric field of the electromagnetic wave in the form
[14]:

Ẽ(z, r, ϕ) ∝ Φnm(r) exp(Λz)e± i nϕ, (3)

where n is an integer, n ≥ 0. For each n > 0 there are
two orthogonal azimuthal modes and many radial modes
that differ by eigenvalue Λ and eigenfunction Φnm(r). The
integro-differential equation for radiation field eigenmodes
[15, 16, 17] can be written in the following normalized
form: [

d2

d r̂2
+

1
r̂

d
d r̂

− n2

r̂2
+ 2 i BΛ̂

]
Φnm(r̂) =

−4

∞∫
0

d r̂′r̂′Φnm(r̂′)

×
∞∫
0

d ξ
ξ

sin2(k̂βξ)
exp

[
− Λ̂2

Tξ2

2
− (Λ̂ + i Ĉ)ξ

]

× exp

[
− (1− iBk̂2

βξ/2)(r̂2 + r̂′2)

sin2(k̂βξ)

]

×In

[
2(1− i Bk̂2

βξ/2)r̂r̂′ cos(k̂βξ)

sin2(k̂βξ)

]
, (4)

where In is the modified Bessel function of the first
kind. The following notations are used here: Λ̂ = Λ/Γ,
r̂ = r/(σ

√
2), B = 2σ2Γω/c is the diffraction pa-

rameter, k̂β = kβ/Γ is the betatron motion parameter,

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany,

TUPPH011 Proceedings of FEL 2007, Novosibirsk, Russia

X-ray FELs

240



Λ̂2
T = 〈(ΔE)2〉/(ρ̄2E2) is the energy spread parame-

ter, Ĉ =
[
kw − ω/(2cγ2

z )
]
/Γ is the detuning parame-

ter, Γ =
[
A2

JJI0ω
2θ2

s

(
IAc2γ2

zγ
)−1

]1/2

is the gain fac-

tor, ρ̄ = cγ2
zΓ/ω is the efficiency parameter, ω is the

frequency of the electromagnetic wave, θs = Krms/γ,
Krms is the rms undulator parameter, γ is relativistic factor,
γ−2

z = γ−2+θ2
s , kw is the undulator wavenumber, IA = 17

kA is the Alfven current, AJJ = 1 for helical undulator and
AJJ = J0(K2

rms/2(1 + K2
rms))− J1(K2

rms/2(1 + K2
rms))

for planar undulator. Here J0 and J1 are the Bessel func-
tions of the first kind. Note that the efficiency parameter ρ̄
is related to the corresponding parameter ρ [18] of the one-
dimensional model as follows: ρ̄ = ρB1/3. The equation
(4) can be reduced to the integral equation by means of the
Hankel transformation [17] and then solved numerically.

Effects of emittance play the dominant role in X-ray
FELs. In this paper we will mainly concentrate on the case
when beta-function is optimized for the highest FEL gain
as it happens in practice. Since diffraction parameter de-
pends on beta-function, it is more convenient to go over
to the normalized parameters other then those introduced
above. Indeed, diffraction parameter can be rewritten as
B = 2ε̂/k̂β , where ε̂ = 2πε/λ. Then we can go from pa-
rameters (B, k̂β) to (ε̂, k̂β). In the following we will con-
sider the case when ε̂ � 1, the energy spread effect can be
neglected, and the beta-function is optimized for the maxi-
mum growth rate. We apply the variational method [17, 19]
to the Eq. (4) with the trial functions [13]

Φnm(r̂) = r̂n exp(−ar̂2)Ln
m(2ar̂2) , (5)

where Ln
m are assotiated Laguerre polynomials. Solving

the obtained equations [13], we find the zeroth-order eigen-
value

Λ̂0 � 0.3695 + 0.2735 i
ε̂

(6)

for the optimal betatron wavenumber k̂β � 0.503/ε̂2 and
at the optimal detuning Ĉ0 � 0.391/ε̂. The diffraction
parameter for this operating point is B � 3.98 ε̂3. Then we
find [13] the next order correction (in ε̂−1) to the eigenvalue

Λ̂nm � Λ̂0 − (1 + n + 2m)(0.3080 + 0.0988 i)
ε̂2

, (7)

and the mode parameter

a � (0.4355− 0.5123 i)ε̂ . (8)

Eqs. (5), (7) and (8) are the solutions for field distribu-
tions and growth rates of eigenmodes of a high-gain FEL
with optimized beta-function in the limit ε̂ � 1. We com-
pared these asymptotical solutions with the exact solution
[17] at the optimal detuning for different modes and found
a good agreement for ε̂ � 1.

Concluding this section, we should analyze some scal-
ing relations. The FEL gain length in the case under con-
sideration scales as Lg = (Re Λ̂0Γ)−1 ∝ ε̂/Γ, while the
beta-function as β = k−1

β ∝ ε̂2/Γ. In other words, the be-
tatron phase advance per gain length, kβLg, is of the order
of ε̂−1. The size of a radiation mode scales as ε̂−1/2, and a
typical change of transverse coordinates of particles during
the passage of one gain length as ε̂−1 in units of the elec-
tron beam size. The rms size of the intensity distribution of
a fundamental mode (with n = m = 0) can be expressed in
dimensional units as σrad � 1.07

√
βλ/(2π) � 0.92

√
εLg

for the optimal beta-function.

INITIAL VALUE PROBLEM

The solution of initial value problem for a SASE FEL
with a parallel electron beam, accounting for diffraction ef-
fects, was obtained in [15, 20]. Initial value problem, that
also includes emittance effect, was solved in [21, 22, 23]
in a general form and then approximated in single-mode
limit. Here we present an explicit solution [13] for a large
emittance, ε̂ � 1, and the optimal (for the growth rate)
focusing, k̂β � 0.503/ε̂2. The normalized output power
(normalized FEL efficiency) in high-gain linear regime can
be expressed as [13]:

η̂ =
η

ρ̄
� 0.0755 exp(2Ng)

Ncε̂2
√

Ng [f (Ng/ε̂)− 1]
(9)

where η is the ratio of the radiation power to the electron
beam power, Ng = Re Λ̂0ẑ = 0.3695ẑ/ε̂ is the number of
field gain lengths within a given undulator length, ẑ = Γz,
Nc = I/(eωρ̄), and the function f is given by

f

(
Ng

ε̂

)
= 0.419 cosh

(
1.667

Ng

ε̂

)
+0.581 cos

(
0.535

Ng

ε̂

)
. (10)

Note that parameter ρ̄ for the given operating point is re-
lated to the corresponding one-dimensional parameter [18]
as ρ̄ = B1/3ρ � 1.58ε̂ρ.

The expression (9) is valid when ε̂ � 1 and Ng � 1,
but the ratio Ng/ε̂ may take any value1. In particular, for a
sufficiently long undulator, Ng � ε̂ � 1, the fundamen-
tal TEM00 gives the dominating contribution to the total
power. In this case Eq. (9) reads

η̂ � 0.360
Ncε̂2

√
Ng

exp [2Ng(1− 0.834/ε̂)]

� 0.36

Ncε̂2
√

N00
g

exp(2N00
g ) , (11)

1In practice the maximal value of Ng is limited by saturation effects
that are not considered in the linear theory presented here. For any reason-
able set of parameters Ng < 10 in linear regime of SASE FEL operation.
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where N00
g � Ng is the number of field gain lengths for

the TEM00 mode. This solution is identical to that given
in [23], taken in the limit ε̂ � 1 with the optimal beta-
function, and integrated over FEL frequency band. Now
let us consider the multi-mode limit, ε̂ � Ng � 1. In this
case the radiation power (9) is expressed as

η̂ � 0.151

NcN
5/2
g

exp(2Ng) . (12)

Relative partial contributions to the total power of modes
with an azimuthal index n can be calculated as follows
[13]:

p0 =

√
f − 1
f + 1

for n = 0 (13)

pn =
2
√

f − 1√
f + 1(f +

√
f2 − 1)n

for n > 0 (14)

For n > 0 we consider the sum of the contributions of
the two independently excited azimuthal modes with the
angular dependence exp(± i nϕ). The contribution of the
azimuthal-symmetric mode goes pretty linearly for Ng <
ε̂:

p0 � 0.5
Ng

ε̂

and asymptotically approaches unity when Ng � ε̂. Other
modes have maxima of which locations can be found from
the equation

f

(
Ng

ε̂

)
=
√

n2 + 1
n

.

Maximal partial contribution of n−th azimuthal mode in
linear regime of SASE FEL operation is given by

max(pn) =
2nn(

√
n2 + 1− n)

(
√

n2 + 1 + 1)n
for n > 0 (15)

For instance, a possible contribution is limited by 34.3% for
n = 1, by 18.0% for n = 2, etc. For large n a maximum
is located at Ng/ε̂ � n−1 and takes the value max(pn) �
(ne)−1, e being the base of natural logarithm.

Especially simple relation for the partial contributions
of azimuthal modes can be deduced for the point where
p0 = p1. There we have:

p0 =
1
3

, pn =
1

2n−13
. (16)

Note that the results (15) and (16) are universal since they
do not depend on a specific choice of the function f .

DEGREE OF TRANSVERSE COHERENCE

The definition of a degree of transverse coherence was
introduced in [9]:

ζ =
∫ ∫ |γ1(�r⊥, �r′⊥)|2〈I(�r⊥)〉〈I(�r′⊥)〉d�r⊥ d�r′⊥

[
∫ 〈I(�r⊥)〉d�r⊥]2

.

(17)
where I(�r⊥) = |Ẽ(�r⊥)|2 is the radiation intensity,

γ1(�r⊥, �r′⊥) =
〈Ẽ(�r⊥)Ẽ∗(�r′⊥)〉[

〈|Ẽ(�r⊥)|2〉〈|Ẽ(�r′⊥)|2〉
]1/2

(18)

is the transverse correlation function, Ẽ is the slowly vary-
ing amplitude of the electromagnetic wave, and < ... >
means ensemble average. The definition (17) is valid for
any stationary (or quasi-stationary [14, 24]) random pro-
cess, in particular for the radiation from a SASE FEL with
a long electron bunch [14] operating in linear and nonlinear
regimes.

The radiation of a SASE FEL, operating in the linear
regime, holds properties of a completely chaotic polarized
light [14, 24]. In this case, as it was shown in [9], the defi-
nition (17) is equivalent to that given by the variance of the
instantaneous power [10, 14]:

ζ = σ2
P =

< (P− < P >)2 >

< P >2
, (19)

where P =
∫

I(�r⊥)d�r⊥. The degree of transverse coher-
ence ζ can be thought of as an inverse number of transverse
modes [9, 10, 14]:

ζ =
1

MT
. (20)

However, the definitions (17) and (19) cannot be directly
used for the purpose of this paper, namely for analyti-
cal calculations of the degree of transverse coherence of a
SASE FEL. Nevertheless, analyzing the results of numer-
ical simulations in Ref. [9], we found out that the degree
of transverse coherence according to the definition (17) is
well approximated by the squared partial contribution of
azimuthal-symmetric mode:

ζ � p2
0 . (21)

Accuracy of this approximation is connected with the resid-
ual effect [10] on transverse coherence originated from the
finite frequency bandwidth of a SASE FEL. Indeed, for a
sufficiently long undulator the only fundamental TEM00

mode survives (other modes are exponentially suppressed),
i.e. perfect transverse coherence would be achieved for a
monochromatic wave. However, the amplitude and phase
distributions of this mode change within the FEL band-
width. As a result, the degree of transverse coherence ap-
proaches unity as [10]: 1 − ζ � δr/Ng but not exponen-
tially as in (21). A numerical factor δr is of the order of
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Figure 1: Degree of transverse coherence versus parameter
Ng/ε̂. The asymptotes (24) and (25) are shown as dot and
dash lines, respectively.

one for ε̂ � 1 [9] and strongly increases in the limit of
small electron beam size. However, for considered here
case ε̂ � 1 we have found analytically [13] that δr � 0.026
for the optimal beta-function:

ζ � 1− 0.026
Ng

, (22)

i.e. this effect is negligible for large Ng . We have seen from
numerical simulations [9] that the relative difference be-
tween (17) and (21) is indeed very small for large ε̂ and Ng

in both linear and nonlinear regimes. Thus, despite the def-
inition (21) was introduced heuristically, it is sufficiently
accurate and adequate for our purposes. We rewrite it, us-
ing (13), in a more explicit form

ζ � f − 1
f + 1

. (23)

The plot of the degree of transverse coherence versus
Ng/ε̂ for the function f from (10) is presented in Fig 1.
For Ng � ε̂ � 1 the degree of transverse coherence is
close to one:

ζ � 1− 2
f
� 1− 9.54 exp

(
−1.667

Ng

ε̂

)
, (24)

but one should keep in mind the residual effect (22). In the
limit ε̂ � Ng � 1 we get

ζ =
1

MT
� 0.25

(
Ng

ε̂

)2

, (25)

or, in dimensional units

ζ =
1

MT
�

(
λNg

4πε

)2

. (26)

Amazingly, a numerical factor in front of the last expres-
sion is equal to one (with the accuracy of the order of 10−3,

accepted in this paper) for the case of the optimal beta-
function. Note that in the case of synchrotron radiation for
an axisymmetric beam one would have in the limit ε̂ � 1
for optimal focusing: ζ = 1/MT � (λ/4πε)2. Thus, the
radiation from a SASE FEL has N2

g higher degree of trans-
verse coherence in this limit.

The asymptotes (24) and (25) are plotted in Fig. One
can see that Eq. (25) is pretty accurate for Ng/ε̂ < 1, and
Eq. (24) - for Ng/ε̂ > 3.

Finally, we present an estimate of the degree of trans-
verse coherence at saturation for the case ε̂ � Ng � 1.
Number of gain lengths at the end of linear regime (where
the formation of transverse coherence stops) can be esti-
mated [13] as Ng � 1

2 ln(Nc/ε̂). Thus, using (25) we get:

ζsat �
(

ln(Nc/ε̂)
4ε̂

)2

. (27)
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