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Abstract 
We present an analytic theory for the exponential-gain 

(growth) regime of a Smith-Purcell free-electron laser 
amplifier (oscillator), which includes the effects of 
transverse diffraction in the optical beam.  The optical 
mode is guided by the electron beam, having a mode 
width that depends upon the gain length.  For the case of a 
wide electron beam, the dispersion relation converges 
with that of the 2-D theory.  When the electron beam is 
narrow, the conventional cubic-dispersion relation is 
replaced by a five-halves dispersion.  The dispersive 
properties of the grating divide device operation into four 
distinct regions, two amplifier and two oscillator.  The 
number and location of physically allowed roots changes 
depending on operating region.  Additionally, in the 
narrow-beam case, new challenges arise in satisfying the 
boundary conditions required for operation as an 
oscillator 

INTRODUCTION 
The wide range of potential applications for THz radiation 
is currently driving interest in the development of intense, 
compact, tunable THz sources.  Such applications include: 
resonant excitation and spectral analysis of chemical and 
biological molecules and systems, medical and industrial 
imaging, and investigations in materials science and 
nanostructures [1,2].  Electron-beam-based devices are 
very promising sources of THz radiation.  These include 
synchrotrons, conventional FELs, and slow-wave devices, 
such as backward-wave oscillators.  While synchrotrons 
and conventional FELs are large and expensive, slow-
wave devices can be compact, laboratory-scale 
instruments. 

Slow-wave structures support subluminal 
electromagnetic modes, which may interact resonantly 
with an electron beam passing in close proximity.  This 
resonant interaction causes bunching in the electron beam 
and amplitude growth of an evanescent optical field.  For 
an open-grating structure, superradiant Smith-Purcell 
radiation may be extracted at harmonics of the evanescent 
wave [3].  This configuration is known as a Smith-Purcell 
free-electron laser (SPFEL).  The SPFEL may be operated 
as an amplifier (convective instability), or as an oscillator 
(absolute instability), depending on the sign of the laser 
wave’s group velocity.  The two-dimensional theory of 
such a device has been examined in detail for the 
exponential gain/growth regime [4,5,6,7], and is closely 
supported by PIC simulations [6,8,9].  A two-dimensional 
numerical treatment of device operation from startup to 
saturation, with one-dimensional electron dynamics, has 
also been performed [7].   

In this work, we include the effects of transverse 
diffraction in the optical beam of an SPFEL.  The 
approach used is similar to that used for the 3-D theory of 
the Cerenkov FEL [10].  As expected, three-dimensional 
effects increase the gain length and oscillator start current 
substantially.  Furthermore, compared to the 2-D theory, 
their dependence on the beam current increases due to 
gain guiding.  We find that diffraction of the optical beam 
in the periodic-grating structure subdivides device 
operation into two amplifier regions and two oscillator 
regions.  For the amplifier and oscillator regions furthest 
from the Bragg point, we find the inclusion of a fast wave 
in the physically allowed solutions.  This is very 
surprising, considering the nature of a guided system.  For 
the oscillator region closest to the Bragg point there are 
only two physically allowed solutions.  It is not known 
how the required boundary conditions on the electron and 
optical beams can be satisfied in this region. 

DISPERSION 
In an SPFEL, resonant energy exchange between 

the electron beam and bound surface modes gives rise to 
spatial modulations in the beam density.  These density 
modulations lead to superradiant enhancement of the 
emitted SP radiation, and subsequent modification of its 
angular distribution [3].  In the following analysis we 
calculate the fields subject to the Maxwell equations and 
boundary conditions and solve for the dispersion relation.  
We then introduce the electron beam as a perturbation and 
calculate the resulting wavenumber and frequency shifts 
for solutions to the dispersion relation.   
 

Table 1: Dartmouth grating and beam parameters 
Grating period  173 µm 
Groove width  62 µm  
Groove depth  100 µm  
Grating length 12.7mm  
E-beam width/height  60 µm  
E-beam current 1 mA  
E-beam height above 
grating  
(measured from bottom of 
beam) 

0 µm 

 
For an electron beam energy of 150 kV  and the grating 
parameters of Table 1, the intensity scale height of the 
evanescent wave is / 4 38 µmx βγλ πΔ = ≈ , where  

43.0~β  is the normalized electron velocity, 
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21/ 1γ β= − , and 3~ 10  mλ −  is the free-space 

wavelength.  We anticipate from simple diffraction 
arguments that the transverse mode width is of order 

/ 2gy Zβλ πΔ ≈  (~millimeters), where gZ  

(~centimeters) is the gain length. Schematics of the device 
geometry with all pertinent dimensions are given in 
Figures 1 and 2.   
 

 
Fig. 1 Geometry of grating structure, viewed from the side 

 

 

Fig. 2 Geometry of evanescent wave and electron beam, 
viewed from front 

 
Because the fields vanish exponentially above the scale 
height, we simplify the theory by allowing the electron 
beam to extend to infinity in the x  direction.   A filling 
factor can be used to correct for errors introduced by this 
approximation [6,11] 
 To calculate the dispersion relation for the 
grating, in the absence of the electron beam, we expand 
the field above the grating in Floquet series and the field 
in the grooves as Fourier series.  Invoking the Maxwell 
equations and matching the fields at the grating surface, 
we arrive at the empty grating dispersion function 

( )2, , yD k kω , where ω  is the frequency, k  is the 

longitudinal wavenumber, and yk  is the wavenumber in 

the y  direction.  We then expand the dispersion function 

about the synchronous point ( 0 0ckω β= ) in ω , k , and 
2

yk , introducing the electron beam as a perturbation.  In 

the limit where the electron beam is infinitely wide the 
dispersion relation matches the 2-D theory [5].  For the 
case of a very narrow beam the resulting dispersion 
relation is 
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where gβ  is the evanescent wave’s goup velocity, δω  

and kδ  are the complex frequency and wavenumber 

shifts respectively, Dω  and yD  are partial derivatives of 

the no-beam dispersion function with respect to ω  and 
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Calculations show that Dω  is negative, irrespective of k , 

but yD  changes such that 0yD >  near the center of the 

Brillouin zone ( )/ 1/ 2k K =  and 0yD <  towards the 

edges of the zone ( )0,k K= .  This subdivides operation 

of the SPFEL into the four distinct regions pictured in 
Figure 3 with the dispersion relation.  Some roots are 
eliminated in each region of operation because they do not 
allow the fields to vanish at y = ±∞ .  A diagram 

detailing this selection is given in Figure 4.  We now 
consider the amplifier and oscillator regimes of the 
SPFEL. 
 

 
Fig. 3 Dispersion relation with different regions of 
operation 

 

 
Fig. 4 Diagram for selection of allowed roots 
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AMPLIFIER 
When the device operates as a steady-state 

amplifier, 0δω =  and gβ  is positive.  In region II, the 

roots of the dispersion relation are 
 

2 4

5 5
i n

nk e
π

δ = Γ    (5) 

where  
1

2

2 2

1 y
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D

c D cωβ β
Δ

Γ = .  (6) 

Similarly, in region I the roots are 
 

42
5 55

i n
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ππ

δ
⎛ ⎞+⎜ ⎟
⎝ ⎠= Γ .  (7) 

In region II only two roots are physically allowed, 
2,3n = .  From Figure 5 we see that these are slow 

waves, i.e. they have a phase velocity lower than that of 
the no-beam-operating point.   
 

 
Fig. 5 Roots for region II in the complex plane 

 
In region I, however, there are three physically 

allowed roots including one fast wave solution.  It is 
surprising that a fast wave is allowed in a gain-guided 
system.  In region II, the 3n =  root has loss and the 

2n =  root has gain.  The gain for the 2n =  root is 
given by 
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and has a corresponding 1/ e  optical mode width of 
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The relationship given in (9) is simply understood to be 
the manifestation of gain guiding in the SPFEL.  As an 
example, we consider the grating and beam described in 
Table 1.  The three-dimensional gain is plotted in Figure 
6, along with the two-dimensional gain, which has been 

scaled down by a factor of three to appear on the same 
graph. 
 

 
Fig. 6 Computed gain for 2-D and 3-D theories as a 
function of beam voltage 

 
The transverse profile of the electric field is given in 

Figure 7, and the 1/ e  mode width is found to be 

4.4mmyΔ ≈ .  By examining the geometry of this 

mode, it is clear that the initial assumptions made 
concerning its dimensions are justified 
 

 
Fig. 7 Transverse profile of the electric-field strength 

OSCILLATOR 
In regions III and IV the group velocity of the evanescent 
mode is negative.  This allows information about the 
bunching of the electron beam at the grating exit to be 
carried back upstream.  This serves as an intrinsic form of 
feedback and, provided that the beam current exceeds the 
so-called start current, allows the device to oscillate.  For 
a solution to exist in the oscillator case, three boundary 
conditions must be satisfied in conjunction with the 
dispersion relation (1).  The electron beam must be free of 
density and velocity modulations at the upstream end of 
the grating, and the input optical field at the downstream 
end must vanish [5,6].  These boundary conditions are 
satisfied by interference of the three waves that compose 
the mode.  Solutions to the inhomogeneous system can 
have different transverse widths due to the presence of 
gain guiding.  Therefore, if only inhomogeneous solutions 
are used, the boundary condition on the input field cannot 
be satisfied for all y .  For a general solution to the 

system, arbitrary amounts of the homogeneous solutions 
may be added.  In the following analysis we require that 

Proceedings of FEL 2007, Novosibirsk, Russia MOPPH026

FEL Theory

79



the boundary conditions be satisfied only on the beam 
axis.  We find that while region IV has three physically 
allowed roots, only two waves are admitted in region III.  
It is not clear how all three boundary conditions may be 
satisfied without the presence of a third wave.  We 
therefore restrict our analysis of the oscillator regime to 
region IV.   

To form a mode of the oscillator, each wave must have 
the same frequency shift δω .  The boundary conditions 
are defined by 
 

31 2

2 2 2
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1 2 3

1/ 1/ 1/

1/ 1/ 1/ 0
ii ie e e ξδξδ ξδ

δ δ δ
δ δ δ =   (10) 
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To find the start current we require ( )0Im 0κ ξ =⎡ ⎤⎣ ⎦ , 

where 
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and solve the dispersion relation 
 

2 1 0j jδ δ κ− ± =   (14) 

subject to (10).  The lowest dimensionless root found is 

0 1.194ξ = , ( )0 1.802κ ξ = .  Both the 2-D and 3-D 

start currents are plotted as a function of operating voltage 
in Figure 8. 

CONCLUSIONS 
We have presented a three-dimensional theory of SPFEL 
oscillator (amplifier) operation for the exponential growth 
(gain) regime.  We find that 3-D effects substantially 
increase both gain length (amplifier) and start current 
(oscillator).  Unexpected consequences result from 
inclusion of diffraction in the grating’s periodic structure.  
Device operation is divided into four regions, which are 

characterized by the number and location of physically 
allowed roots to the dispersion relation.  Fast waves are 
included in some regions of operation despite the guided 
nature of the interaction.  In the present theory the mode 
width vanishes mathematically at the boundaries of these 

regions ( )0yD → .  These consequences are not fully 

understood at present.   
 

 
Fig. 8 Oscillator start current as a function of electron 
beam voltage 
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