
THREE-DIMENSIONAL THEORY OF THE CERENKOV
FREE-ELECTRON LASER

H. L. Andrews∗ and C. A. Brau
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, 37235, USA

Abstract

We present an analytical theory for the operation of a
Cerenkov free-electron laser which includes diffraction of
the optical mode in the direction transverse to the elec-
tron beam. Because the width of the optical mode depends
on gain, the usual cubic dispersion relation is replaced by
a 5/2-power dispersion relation, which allows two roots.
These roots both have positive real parts, indicating that
they are slow waves. For a narrow electron beam, the op-
tical mode is much wider than the beam, thus reducing the
gain by an order of magnitude from that predicted by the
two-dimensional theory. In the limit of a wide electron
beam, the two-dimensional theory is recovered.

INTRODUCTION

Compact narrow-band far-infrared, or terahertz (THz),
sources have potential applications in a large number
of fields including biology, chemistry, and materials
science[1, 2]. The current THz sources in existence either
produce short-pulsed broadband radiation, or require very
large facilities. The exceptions to these are CO2 pumped
FIR lasers and backward-wave oscillators (BWOs). FIR
lasers only have discreet lines, making them impractical for
spectroscopy, and BWOs do not reach short enough wave-
lengths. Free-Electron Lasers (FELs) based on either the
Smith-Purcell effect or Cerenkov radiation offer the possi-
bility of a source capable of producing narrow-band THz
radiation.

In a Cerenkov FEL the electron beam interacts with the
evanescent wave of a single-sided dielectric waveguide.
Since the wave has a forward group velocity, the instability
is convective and the device works as an amplifier. Oscil-
lation is achieved by feedback from reflections at the ends
of the structure. The most powerful CFELs use ampere
beams in cylindrical waveguides [3] but smaller devices
can be constructed using milliampere beams in planar ge-
ometries [4]. The theory of cylindrical devices has been
developed in detail, and the agreement with experimental
results is good [3]. The theory for planar geometries has
been worked out in two dimensions [5]. We extend this the-
ory to three dimensions by including diffraction of the op-
tical beam in the direction transverse to the electron beam,
parallel to the surface of the dielectric [6]. We show that
the gain is reduced by an order of magnitude and the fun-
damental nature of the conventional three-wave interaction
is altered.
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THEORY

To model the CFEL in three-dimensions we let the elec-
tron beam pass above a dielectric slab, bounded below by a
conductor, as shown in Figure 1. The electron beam travels
in ẑ, while x̂ extends above the slab and ŷ is the transverse
direction. We assume a beam of width W , and a dielectric
slab of depth H .
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Figure 1: Geometry used for the three-dimensional model.
The electron beam has a width W and is allowed to ex-
tend to infinity in x. The dielectric had a depth H and
is wide compared to both the evanescent scale height and
mode width.

To make the problem tractable, we start by making three
assumptions. First, we assume the electron beam is uni-
form and extends infinitely far in x̂. This introduces negli-
gible errors to the theory because the electron beam height
is actually on the order of the evanescent scale height. The
assumption is corrected at the end of the calculation by
using a filling factor. Next, we assume the operating fre-
quency of the device is much larger than the plasma fre-
quency or ω � ωe. This is justified by considering the
operating parameters of the most recent CFEL experiments
at Dartmouth [4], shown in Table 1. For these parame-
ters ω ≈ 1012 Hz and ωe ≈ 109 Hz. Finally, we assume
that the mode width, Δy, is much greater than the evanes-
cent scale height, Δx. For the Dartmouth parameters
Δx = βγλ/4π ≈ 80μm, where βc is the electron beam
velocity, γ = 1/

√
1− β2 and λ is the operating wave-

length. Diffraction arguments suggest that the evanescent
mode width is on the order of Δy =

√
βλZg/2π ≈mm

where Zg is the gain length.

We find the fields within and above the dielectric by
solving Maxwell’s equations and requiring the solutions to
meet the appropriate boundary conditions. Only TM modes
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Table 1: Parameters used in the Dartmouth experiments
and all theoretical predictions [4]

Dielectric thickness 350 μm
Index of refraction 3.6
Beam energy 30 keV
Beam thickness 70 μm
Beam current 1 mA

of the form

Ez = E0 (x, y) ei(kz−ωt) (1)

Ht = H0 (x, y) ei(kz−ωt)

are considered, where k is the wave vector in the ẑ di-
rection. We find the fields above the dielectric by start-
ing in the electron rest frame, where we can treat the elec-
tron beam as an isotropic dielectric. We then transform the
fields into the laboratory frame. By setting the fields above
and within the dielectric equal at the boundary, we find the
dispersion relation. When there is no beam present, we find
the two-dimensional dispersion relation,

D (ω, k, ky) = (2)

n2
(
ω2 − k2c2

)
n2ω2 − k2c2

κ (ky) cot [κ (ky) H ] + α (ky)

where n is the index of refraction of the dielectric slab,
ky is the ŷ component of the wave vector, κ (ky) is the
x̂ component of the wave vector within the dielectric, and
α (ky) is the x̂ component of the wave vector above the
dielectric. The dispersion relation is plotted in Figure 2.
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Figure 2: The two-dimensional dispersion curve for the pa-
rameters used in experiments at Dartmouth (see Table 1).
Only the first order branch is shown.

When the electron beam is present, we anticipate that
the highest gain will be found in the vicinity of the syn-
chronous point, shown in Fig. 2, where the electron-beam
line intersects the dispersion curve or, ω0 = βck0. We also
assume that most waves are traveling parallel to the direc-
tion of beam travel so ky ≈ 0. We can then expand the

dispersion relation about this point and find,

(δω − βcδk)
[
Dω (δω − βgcδk) + Dyk

2
y

]
Ē (ky) = (3)

W

2π

ω2
eα0

γ3

∫ ∞

−∞
dk′yĒ′ (k′y)

sinc

[
W

2
(
ky − k′y

)]
where

Dω =
∂D (ω, k, ky)

∂ω

∣∣∣∣
(ω0,k0,0)

(4)

Dy =
∂D (ω, k, ky)

∂k2
y

∣∣∣∣
(ω0,k0,0)

and δω and δk are the shifts in frequency and wave vec-
tor from the synchronous point, βg is the group veloc-
ity, α0 = α (ω0, k0, ky = 0) and k′y is a dummy variable.
Computations show that Dω > 0, Dy < 0 and βg > 0. In
general this equation must be solved numerically, but for
either a wide or narrow electron beam, analytical solutions
to the dispersion relation can be found.

Wide Electron Beam

When the electron beam is wide, W � Δy, the sinc
function behaves like a delta function, so we evaluate the
integral at k′y = ky . We recover the two-dimensional cubic
dispersion relation,

(δω − βcδk)2 (δω − βgcδk) =
ω2

e

γ3

α0

Dω
, (5)

the roots of which are shown in Figure 3. As in the two-
dimensional case, one root corresponds to a fast wave, one
to a slow wave which gains energy from the electron beam,
and one to the structure wave, which decays. For steady-
state amplifier operation we take δω = 0 and find that the
gain in three dimensions with a wide beam,

μ3D−wide = −Im (δk) =
√

3
2

(
ω2

e

γ3β2βgc3

α0

Dω

)1/3

(6)

is identical to the two-dimensional gain.
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Figure 3: Roots of the dispersion relation for a wide elec-
tron beam. These are the same as for the two-dimensional
result.
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Narrow Electron Beam

When the electron beam is narrow, W � Δy, we ap-
proximate sinc (x) ≈ 1. The integral becomes trivial, and
we are able to invert the Fourier transform of the field using
contour integration. The dispersion relation in this limit is

E0 (0, y) =
W

2
ω2

e

γ3

α0

Dy

E0 (0, 0)

(δω − βcδk)2
eyΔky

Δky
(7)

where

Δk2
y =

Dω

Dy
(δω − βgcδk) (8)

and the sign of the root is chosen such that for positive y
Re (Δky) < 0 and for negative y Re (Δky) > 0. Solving
this dispersion relation on axis for the steady-state amplifier
case, y = 0 and δω = 0, we find the roots are

δkn = K2/5ei(4/5)nπ (9)

where

K =
W

2
ω2

e

γ3β2β
1/2
g c5/2

α0√
Dω |Dy|

. (10)

Figure 4 shows these five roots. Only two, n = 2 and
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Figure 4: Roots of the dispersion relation for a narrow elec-
tron beam. Because of physical constraints, only n = 2 and
n = 3 roots are true solutions. The n = 2 root has positive
gain, while n = 3 has negative gain. Both modes have the
same width and are slow waves (Re (δk) > 0).

n = 3 are physically admissible solutions; for the others,
the fields diverge at y = ±∞. Of these the n = 2 root has
positive gain and the n = 3 root has negative gain where
the gain is given by

μ3D−narrow = −Im (δk2) = K2/5 sin
(

2
5
π

)
. (11)

From Equation 7, we find the mode width at the 1/e point
to be

Δy = − 2
Re (Δky)

=
2

K1/5

∣∣∣∣ Dy

βgcDω

∣∣∣∣1/2

sec
(π

5

)
. (12)

DISCUSSION AND COMPARISON WITH
EXPERIMENT

Using the parameters in Table 1, we can com-
pare the results of the two-dimensional theory with the
three-dimensional theory and experimental observations.
The vertical and transverse field profiles for the three-
dimensional theory using a narrow electron beam are
shown in Figures 5 and 6, respectively. The transverse
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Figure 5: Vertical profile of the electric field. The field
height is much smaller than the field width shown in Fig-
ure 6.
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Figure 6: Transverse profile of the electric field. The field
is much wider than the electron beam used in experiments.
It is also wide compared with the evanescent scale height.

field profile shows that the mode width, Δy ≈ 6 mm,
is large compared to both the width of the electron beam
and the scale height of the evanescent wave, as initially as-
sumed.

In computing the gain, we recognize that the electron
beam only extends above the dielectric a distance compa-
rable to the scale height of the evanescent wave, rather than
well beyond the wave. To correct for this we reduce the
electron density, or equivalently ω2

p, by a filling factor [7, 8]

Ffill = 1− e−W/Δx. (13)

We find that the two-dimensional gain is μ2D ≈ 50/m,
in good agreement with the theoretical prediction of 60/m
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by the Dartmouth group [4, 5]. The three-dimensional gain,
μ3D ≈ 10/m, is a factor of 5 smaller. This can be under-
stood as diffraction diluting the effective current density
by spreading the optical mode over an area much larger
than the electron beam. The experimental value for gain re-
ported by the Dartmouth group [4] is μexp ≈ 250−450/m.
This is 5 − 9 times larger than the two dimensional theory
and 25−45 times larger than the three-dimensional theory.
The origin of this discrepancy is not understood.

Equally interesting are the structure of the dispersion re-
lation in three dimensions and the location of the roots.
In place of the cubic dispersion relation characteristic of
two-dimensional geometries and axially symmetric struc-
tures, we obtain and 5/2-power dispersion relation. The
two roots which satisfy the dispersion relation are labeled
n = 2 and n = 3 in Figure 4. The n = 2 root has gain
while the n = 3 root has loss. Both roots have the same
real part, corresponding to the same mode width and indi-
cating that both are slow waves (Re (δk) > 0). This result
is surprising because it suggests that transverse diffraction
in a three-dimensional structures forbids fast waves. We
can understand this result physically by recognizing that
when waves are confined to the region near the electron
beam the situation is similar to waves guided by a dielectric
waveguide. Because its index of refraction exceeds unity,
the dielectric waveguide only supports slow waves, so opti-
cal modes supported by the CFEL can only be slow waves.
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