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Abstract

A quasilinear theory of the free-electron laser, in Raman
regime, is presented to establish that conservation laws on
number, energy, and momentum are upheld. A high density
electron beam is assumed so that the space-charge potential
is no longer negligible. A sufficiently broad band spectrum
of waves is assumed so that saturation will be due to the
quasilinear spread of the beam electrons. Otherwise, for
the single mode excitation, saturation will be due to the
electron trapping in the space-charge potential. It is shown
that the quasilinear slow variation of the background distri-
bution function is in the form of the diffusion equation in
momentum space. An expression for the time evolution of
the spectral energy density is derived. Conservation laws
to the quasilinear order (second order) are derived and are
proved to be satisfied. Results of the present investigation
may be used to study the quasilinear saturation of a free-
electron laser in the presence of the space-charge wave.

INTRODUCTION

Saturation and nonlinear evolution of free-electron lasers
(FEL) are of considerable importance both experimentally
and theoretically. The main reason is that saturation deter-
mines the efficiency of the device.

For sufficiently broad spectrum of unstable waves, satu-
ration is due to quasilinear energy spread of the beam elec-
trons. This problem has been studied only in the Comp-
ton regime, where the electrostatic potential of the space-
charge wave is negligible due to low density of the electron
beam [1-5]. On the other hand, when there is only a single
exited mode, saturation of the amplification is considered
to be caused by electrons trapped in the electrostatic field
of the space-charge wave in the Raman regime or the pon-
dermotive wave in the Compton regime [6-8].

The purpose of the present investigation is to derive con-
servation laws in the quasilinear analysis of an FEL in the
presence of the space-charge field of electrons. The method
of analysis and notations are similar to Ref. 1. The quasi-
linear slow variation of the background distribution func-
tion is in the form of the diffusion equation in momentum
space. An expression for the time evolution of the spec-
tral energy density is derived. Conservation laws, to the
quasilinear order (second order), for particle, energy and
momentum are derived and are proved to be satisfied.

PHYSICAL MODEL

We consider a collisionless, relativistic, electron beam
with uniform cross section propagating in the z direction.
The electron beam propagates through a constant ampli-
tude helical wiggler magnetic field specified by

B0 = −Bwcos(k0z)êx −Bwsin(k0z)êy, (1)

The transverse electromagnetic and longitudinal electro-
static perturbed fields δE and δB are defined as

δE = −1
c

∂

∂t
δA−∇δϕ, δB = ∇× δA. (2)

The relativistic, nonlinear Vlasov equation for the elec-
tron beam distribution function fb(z, p, t) is given by

[
∂

∂t
+vz

∂

∂z
−e(δ E+

v× (B0 + δB)
c

).
∂

∂p
]fb(z, p, t) = 0.

(3)
In the present analysis, we investigate the class of exact
solution to Eq. (3) of the form

fb(z, p, t) = n0δ(Px)δ(Py)G(z, pz, t), (4)

where n0 = const, and Px and Py are the canonical mo-
menta transverse to the beam propagation direction. Sub-
stituting the distribution function (4) into Eq. (3) and inte-
grating the resting equation over px and py , gives

[
∂

∂t
+ vz

∂

∂z
− ∂

∂z
H(z, pz, t)

∂

∂pz
]G(z, pz, t) = 0. (5)

In this equation, H(z, pz, t) is defined by

H(z, pz, t) = γT mc2 − eδϕ(z, t)

= [m2c4 + c2p2
z + e2(A0

x + δAx)2 + e2(A0
y + δAy)2](1/2)

−eδϕ(z, t), (6)

which is the particle energy for Px = 0 = Py , and γT mc2

is the kinetic energy. In the absence of perturbed fields, the
energy is given by

γmc2 = (m2c4 + c2p2
z + e2B2

w/k2
0)

1/2. (7)
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It is assumed that the distribution function G(z, pz, t),
H(z, pz, t), and δϕ(z, t) are spatially periodic with period-
icity length 2L so it is convenient to introduce the specially
averaged distribution function G0(pz, t) defined by

G0(pz, t) = 〈G〉 =
1

2L

∫ L

−L

dzG(z, pz, t). (8)

For small δA and δϕ,

G(z, pz, t) = G0(pz, t) + δG(z, pz, t), (9)

H(z, pz, t) = H0(pz, t) + δH(z, pz, t) = γmc2 + δH,
(10)

and therefore

δH(z, pz, t) = (e2/γmc2)(A0
xδAx +A0

yδAy)−eδϕ(z, t).
(11)

Equation (11) shows that the space-charge wave constitute
the electrostatic potential of the perturbed Hamiltonian or
energy. By substituting vz = pz/γT m = pzc

2/(H +eδϕ),
Eq. (6) can be expressed as

∂

∂t
G + pzc

2 ∂

∂z
(

G

H + eδϕ
)− ∂

∂pz
(G

∂

∂z
H) = 0,

which can be averaged over the spatial periodicity length
2L to obtain

∂

∂t
G0 =

∂

∂t
〈G〉 =

∂

∂pz
〈δG ∂

∂z
δH〉. (12)

In the approximation where only linear wave-particle inter-
actions are retained in the description, δG evolves accord-
ing to [1]

∂

∂t
δG +

pz

γm

∂

∂z
δG− (

∂

∂z
δH)

∂

∂pz
G0 = 0. (13)

Equation (13) will be recognized as the linearized Vlasov
equation for perturbations about spatially uniform distri-
bution function G0(pz, t), which varies slowly with time
according to Eq. (12).

TIME EVOLUTION OF DISTRIBUTION
FUNCTION AND ENERGY

We introduce the Fourier series representations

G(z, pz, t) = G0(pz, t)+
∑

k

′δGk(pz, t) exp(ikz), (14)

H(z, pz, t) = H0(pz, t)+
∑

k

′δHk(pz, t) exp(ikz), (15)

δψ(z, t) =
∑

k

δψ(k, t) exp(ikz), (16)

where δψ is δAx, δAy , or δϕ and k = nπ/L with n an
integer and the summations run from k = −∞ to k = +∞.
The prime on the summations denotes that the k = 0 term

is omitted. From Eqs. (11), and (14)-(16) it follows that
(for k �= 0)

δHk = (
e2Bw

2γmc2k0
)[δAx(k + k0) + iδAy(k + k0)

+δAx(k − k0)− iδAy(k − k0)]− eδϕ(k). (17)

The time dependence of perturbed quantities is assumed
to be of the form exp(−i

∫ t

0
Ωk(t

′
)dt

′
) in circumstances

where the time variation of G0(pz, t) is sufficiently slow
Ωk = ωk + iγk = −ω−k + iγ−k. By use of γ̄mc2 = const
that denotes the characteristic mean energy of the unper-
turbed beam electrons we can write the perturbed am-
plitudes in terms of dimensionless amplitudes δΦ(k) and
δA±k±k0

. In Fourier variables, Eq. (12) becomes

∂

∂t
G0 = − ∂

∂pz

∑
k

ikδH−kδGk. (18)

Solving Eq. (13) and neglecting free-streaming contribu-
tions to δGk(pz, t), we obtain for the perturbed distribution
function

δGk(pz, t) = −[(
γ̄eBw

2γk0
)(δA+

k+k0
+δA−k−k0

)−γ̄mc2δΦ(k)]

×(
k∂G0/∂pz

Ωk − kvz
) exp(−i

∫ t

0

Ωk(t
′
)dt

′
). (19)

Substituting Eqs. (17) and (19) into Eq. (18) yields the
quasilinear kinetic equation for G0(pz, t):

∂

∂t
G0(pz, t) = i

∑
k

k2 ∂

∂pz
(
|δHk|2∂G0/∂pz

Ωk − kvz
). (20)

Note that Eq. (20) has the form of a diffusion equation
for G0(pz, t) in momentum space.

Linear Dispersion Relation and Energy Equation

The complex oscillation frequency Ωk(t) is obtained
adiabatically in terms of G0(pz, t) from the linear DR. For
the present configuration the linear DR is derived in Ref. 9
and 10 as follows

c2k2DL
k (Ωk)DT

k−k0
(Ωk)DT

k+k0
(Ωk) =

(1/2)a2
w[DT

k−k0
(Ωk) + DT

k+k0
(Ωk)]

×{[χ(1)
k ]2 − c2k2DL

k (Ωk)[χ(2)
k + α3ω

2
pe]}, (21)

where the dielectric functions DL
k , DT

k−k0
, DT

k+k0
, and the

effective susceptibility χ
(n)
k are defined by

DT
k±k0

(Ωk) = Ω2
k − c2(k ± k0)2 − α1ω

2
pe, (22)

χ
(n)
k (Ωk) = γ̄n+1mc2ω2

pe

∫
dpz

γn

k∂G0/∂pz

Ωk − kvz
. (23)

DL
k (Ωk) = 1 +

χ
(0)
k (Ωk)
c2k2

, (24)
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Here ω2
pe = 4πn0e

2/γ̄m, aw = eBw/γ̄mc2k0 and αn =
γ̄n

∫
dpz

γn G0. We will now obtain the wave kinetic equa-
tion. The average energy density in the electromagnetic
and electrostatic fields is given by

1
8π

∑
k

[|δEk|2 + |δBk|2] =

(
γ̄mc2

2e
)2

1
4πc2

∑
k

{|δA+
k+k0

|2[|Ωk|2 + c2(k + k0)2]

+|δA−k−k0
|2[|Ωk|2 + c2(k − k0)2] + 2c2k2|δΦ(k)|2}

×exp(2
∫ t

0

γk(t
′
)dt

′
) =

∑
k

εk(t), (25)

where εk(t) is the spectral energy density. From Eq. (25),
it follows that εk(t) evolves according to

∂

∂t
εk(t) = 2γk(t)εk(t), (26)

where the linear growth rate γk(t) is determined adiabati-
cally in terms of G0(pz, t) from Eq. (21). Equations (20),
(21), and (26) then form a closed quasilinear description
of the system including the effects of linear wave-particle
interactions.

CONSERVATION OF PARTICLE,
MOMENTUM AND ENERGY

The fully nonlinear Vlasov-Maxwell equations possess
three exact conservation relations. These are: average den-
sity, ∫ L

−L

dz

2L

∫
d3pfb(z, p, t) = const, (27)

total average plasma kinetic energy density plus electro-
magnetic and electrostatic field energy density,∫ L

−L

dz

2L
{
∫

d3p(γT − 1)mc2fb(z, p, t)

+
1
8π

[(δE)2 + (B0 + δB)2]} = const, (28)

and total average plasma momentum density plus electro-
magnetic field momentum density,∫ L

−L

dz

2L
{
∫

d3ppzfb(z, p, t) +
1

4πc
(δE× B0

+δE× δB)z} = const. (29)

We now demonstrate that the conservation relations (27)-
(29) are upheld by the quasilinear kinetic equations derived
in Eq. (20). The distribution function fb is taken to be of
the form of Eq. (4). In Eqs. (27)-(29), we expand quanti-
ties such as γT mc2 and retain up to second-order terms in
perturbation amplitudes.

Particle conservation: Substituting Eq. (4) into Eq. (27),
and making use of Eq. (9), we obtain

∂

∂t

∫ ∞

−∞
dpzn0G0(pz, t) = 0. (30)

Clearly this is true for ∂G0/∂t given by Eq. (20) since Eq.
(20) is in the form of a diffusion equation in momentum
space and the integrand is an exact differential.
Energy conservation: To show energy conservation from
quasilinear theory, the quantity γT mc2 [Eq. (6)] is ex-
panded to second order, by this we have

〈KED〉 =
∫ L

−L

dz

2L

∫ ∞

−∞
dpzn0((γ − 1)mc2G0

+
e2

γmc2
[(A0

xδAx + A0
yδAy)δG− (δA2

x + δA2
y)G0]

−1
2

e4

γ3m3c6
(A0

xδAx + A0
yδAy)2G0) (31)

In above equation 〈KED〉 is the average plasma kinetic en-
ergy density. Then the quasilinear analog of the exact en-
ergy conservation relation in Eq. (28) can be expressed as

∂

∂t
〈KED〉 = − ∂

∂t
〈 1
8π

[(δE)2 + (B0 + δB)2]〉, (32)

To verify Eq. (32), we proceed by taking the derivative
of Eq. (31) with respect to time, and substituting Eq. (20)
for ∂G0/∂t into the first term on the right-hand side of Eq.
(31). The perturbed distribution function δG appearing in
second term is obtained from Eq. (19). Then by use of DR
(21) we can eliminate the integrals over momentum in favor
of dielectric functions DT

k+k0
, DT

k−k0
, and DL

k . Relations
between the perturbed amplitudes and dielectric functions
are also used.

∂

∂t
〈KED〉 = (

γ̄mc2

2e
)2

1
2πc2∑

k

{(iωk + γk)[DT
k+k0

|δA+
k+k0

|2 + DT
k−k0

|δA−k−k0
|2]

+γk(ω2
peα1)[|δA+

k+k0
|2 + |δA−k−k0

|2]

+(iωk − γk)[2c2k2|δΦ(k)|2]}exp(2
∫ t

0

γk(t
′
)dt

′
). (33)

Substituting Eq. (22) into Eq. (33), and eliminating terms
in the k summations, which are odd functions of k, yields

∂

∂t
〈KED〉 = −(

γ̄mc2

2e
)2

1
4πc2

∂

∂t

∑
k

exp(2
∫ t

0

γk(t
′
)dt

′
)

×([|δA+
k+k0

|2(|Ωk(t)|2 + c2(k + k0)2)

+|δA−k−k0
|2(|Ωk(t)|2 + c2(k− k0)2)] + [2c2k2|δΦ(k)|2]).

(34)
The right-hand side of Eq. (32) can be evaluated

− ∂

∂t
〈[ 1

8π
(δE)2 + (δB + B0)2]〉 =
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−(
γ̄mc2

2e
)2

1
4πc2

∂

∂t

∑
k

exp(2
∫ t

0

γk(t
′
)dt

′
)

([|δA+
k+k0

|2(|Ωk(t)|2 + c2(k + k0)2)

+|δA−k−k0
|2(|Ωk(t)|2 + c2(k− k0)2)] + [2c2k2|δΦ(k)|2]).

(35)
Comparing Eqs. (35) and (34) completes the proof of

Eq. (32).
Momentum conservation: We will now show that the av-

erage total axial momentum is conserved in the quasilinear
theory. To obtain the quasilinear analog of Eq. (29), Eq.
(4) is substituted into Eq. (29), the resulting equation is
differentiated with respect to time, use is made of Eq. (12),
and we integrate by part with respect to pz:

−n0e

mc

∫ L

−L

dz

2L
[(

e

c
(A0

x + δAx)
∂

∂z
(A0

x + δAx)

+
e

c
(A0

y + δAy)
∂

∂z
(A0

y + δAy))
∫ ∞

−∞

dpz

γT
G]

+
∂

∂t

∫ L

−L

dz

2L

1
4πc

(δE× B0 + δE× δB)z = 0. (36)

Where
∫ L

−L
dz
2L

1
4πc (δE × B0)z = 0. We can expand

the transverse current density −e
∫

d3p(vxêx + vy êy)fb in
powers of perturbed quantities. Thus, for the form of f0

given in Eq. (4) and by expanding G and 1/γT to first
order perturbed amplitudes the time rate of change of the
average plasma momentum density is given by

∂

∂t
〈PMD〉 =

∫ L

−L

dz

2L

∫ ∞

−∞
dpz(−n0e

2

mc2
)

×[
1
γ

A0
xδG

∂

∂z
δAx +

1
γ

A0
yδG

∂

∂z
δAy

− e2

γ3m2c4
(A0

xδAx+A0
yδAy)G0(A0

x

∂

∂z
δAx+A0

y

∂

∂z
δAy)]

(37)
correct to second order in the perturbation amplitude. The
analogue equation to Eq. (29) in quasilinear theory is

∂

∂t
〈PMD〉 = − ∂

∂t
〈 1
4πc

(δE× δB)z〉. (38)

Rearranging the terms in Eq. (37) and by use of the DR
(21) and the relation between perturbed amplitudes and di-
electric functions we have

∂

∂t
〈PMD〉 = −(

γ̄mc2

2e
)2

1
2πc2

∂

∂t

∑
k

exp(2
∫ t

0

γk(t
′
)dt

′
)

×ωk[(k + k0)|δA+
k+k0

|2 + (k − k0)|δA−k−k0
|2]. (39)

We can now evaluate the second term of Eq. (29) by use of
Eqs. (3), (14)-(16)

− ∂

∂t
〈 1
4πc

(δE× δB)z〉 =
1

4πc

− ∂

∂t

∑
k

ik

c
(δA∗x(k, t)

∂

∂t
δAx(k, t)+δA∗y(k, t)

∂

∂t
δAy(k, t))

= −(
γ̄mc2

2e
)2

1
2πc2

∂

∂t

∑
k

exp(2
∫ t

0

γk(t
′
)dt

′
)

×ωk[(k + k0)|δA+
k+k0

|2 + (k − k0)|δA−k−k0
|2], (40)

Then, Eq. (38) is directly proved by comparing Eqs. (39)
and (40).

CONCLUSION

In the Raman regime, due to the high density of the elec-
tron beam, the space-charge potential is not negligible com-
pared to the pondermotive potential. In this paper we have
derived conservation laws in the quasilinear analysis of an
FEL in the presence of the space-charge field of electrons.

The assumption of a broad spectrum of waves ensures
that the saturation takes place through the quasilinear dif-
fusion of electrons in the momentum space rather than by
the particle trapping.

The presence of space-charge wave, that is resonant in
the Raman regime, with the real parts of the frequency
and wave number satisfying the linear DR, modifies the
problem considerably compared to the Compton regime in
which space-charge potential is negligible in comparison to
the pondermotive potential.

The quasilinear kinetic theory used to derive three ex-
act conservation relations, corresponding to conservation
of (average) particle density, total energy, and total axial
momentum. These results may be used to study the quasi-
linear saturation of a FEL in the raman regime.
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