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Abstract

A quasilinear theory of the free-electron laser, in Raman
regime, is presented to establish that conservation laws on
number, energy, and momentum are upheld. A high density
electron beam is assumed so that the space-charge potential
isno longer negligible. A sufficiently broad band spectrum
of waves is assumed so that saturation will be due to the
quasilinear spread of the beam electrons. Otherwise, for
the single mode excitation, saturation will be due to the
electron trapping in the space-charge potential. It is shown
that the quasilinear slow variation of the background distri-
bution function is in the form of the diffusion equation in
momentum space. An expression for the time evolution of
the spectral energy density is derived. Conservation laws
to the quasilinear order (second order) are derived and are
proved to be satisfied. Results of the present investigation
may be used to study the quasilinear saturation of a free-
electron laser in the presence of the space-charge wave.

INTRODUCTION

Saturation and nonlinear evolution of free-electron lasers
(FEL) are of considerable importance both experimentally
and theoretically. The main reason is that saturation deter-
mines the efficiency of the device.

For sufficiently broad spectrum of unstable waves, satu-
ration is due to quasilinear energy spread of the beam elec-
trons. This problem has been studied only in the Comp-
ton regime, where the electrostatic potential of the space-
charge wave is negligible due to low density of the electron
beam [1-5]. On the other hand, when thereis only asingle
exited mode, saturation of the amplification is considered
to be caused by electrons trapped in the electrostatic field
of the space-charge wave in the Raman regime or the pon-
dermotive wave in the Compton regime [6-8].

The purpose of the present investigation isto derive con-
servation laws in the quasilinear analysis of an FEL in the
presence of the space-chargefield of electrons. The method
of analysis and notations are similar to Ref. 1. The quasi-
linear slow variation of the background distribution func-
tion isin the form of the diffusion equation in momentum
space. An expression for the time evolution of the spec-
tral energy density is derived. Conservation laws, to the
quasilinear order (second order), for particle, energy and
momentum are derived and are proved to be satisfied.
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PHYSICAL MODEL

We consider a collisionless, relativistic, electron beam
with uniform cross section propagating in the z direction.
The electron beam propagates through a constant ampli-
tude helical wiggler magnetic field specified by

Bo = —Bucos(koz)€, — Bysin(koz)€,, (1)

The transverse electromagnetic and longitudina electro-
static perturbed fields E and 0B are defined as

0B = — L9 5a iy,

~a SBB=VxiA. (2

The relativistic, nonlinear Vlasov equation for the elec-
tron beam distribution function f,(z, p, t) isgiven by

D D sy VX (Bo+0B)

B
ot F oz )-a—p]fb(z, p,t) =0.

(©)
In the present analysis, we investigate the class of exact
solution to Eq. (3) of the form

fb(2'7 P, t) = noé(P.r)(;(Py)G(Zapm t)a (4)

where ng = const, and P, and P, are the canonical mo-
menta transverse to the beam propagation direction. Sub-
stituting the distribution function (4) into Eq. (3) and inte-
grating the resting equation over p,, and p,, gives

0 0] 0 0
[a + UZ& — &H(Z,pz,t)aipz]G(Z,pz,t) =0. (5)

In thisequation, H(z,p.,t) isdefined by
H(Zapzv t) = ’YTmCQ - 65(,0(2, t)
= [m?c* + 2p? + (A% +6A4,)% + €2 (Ag + 6Ay)2](1/2)

—6(5(,0(2,t), (6)

which is the particle energy for P, = 0 = P,, and ypmc?
isthe kinetic energy. In the absence of perturbed fields, the
energy is given by

yme® = (m*c* + Pp2 + 2By k)2 (7)
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It is assumed that the distribution function G(z, p., 1),
H(z,p.,t),and dp(z,t) are spatialy periodic with period-
icity length 2 so it is convenient to introduce the specially
averaged distribution function G (p., t) defined by

1 L
Golpest) = () =5 [ d:sGlepert). @
—L
For small A and ¢,
G(vaz,t) = GO(pz,t) + 5G(zvpzat)v (9)
H(Z7pzat) = HO(pz,t) + 5H(Z,pz,t) = ’ymc2 + 5H,

(10)
and therefore

SH(z,p.,t) = (e2/ymc?) (A5 A, +A2(5Ay) —edp(z,t).

11
Equation (11) shows that the space-charge wave constitute
the electrostatic potentia of the perturbed Hamiltonian or

energy. By substituting v, = p. /yrm = p.c*/(H +edyp),
Eg. (6) can be expressed as

0 5 0 G 0 0

EG +pac 8Z(H + 65<p) op. (G(?zH)

which can be averaged over the spatial periodicity length
2L to obtain
0 0 0 0

Go = =.(G) = 5-(6G

500 = 3 - H). (12)

In the approximation where only linear wave-particle inter-
actions are retained in the description, G evolves accord-
ingto[1]

0 0 0 0
—o0H
ot ym 8 — (50

Go=0. (13)

=M g,

Equation (13) will be recognized as the linearized Vlasov
equation for perturbations about spatially uniform distri-
bution function Go(p., t), which varies slowly with time
according to Eq. (12).

TIME EVOLUTION OF DISTRIBUTION
FUNCTION AND ENERGY

We introduce the Fourier series representations

G(2,pzrt) = Golpz,t)+ Y '0G(p-, t) exp(ikz), (14)
k

H(z,p.,t) = Z dH(p.,t) exp(ikz), (15)

k

Mp(z,t) = Z 0Y(k,t) exp(ikz),
k

HO pza
(16)

where 1 iS0A,, 04, or §p and k = nx/L with n an
integer and the summationsrunfromk = —co to k = +oc.
The prime on the summations denotes that the £ = 0 term
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is omitted. From Egs. (11), and (14)-(16) it follows that
(for k #£0)

€2 By,
2vymc? kg

0 A (k — ko) — i6 A, (k — ko)) — edp(k).  (17)

The time dependence of perturbed quantities is assumed
to be of the form exp(—i fo Qe (t dt ) in circumstances
where the time variation of Go(pz, t) is sufficiently slow
O = Wi +iye = —w_ +ivy_. By useof ymc? = const
that denotes the characteristic mean energy of the unper-
turbed beam electrons we can write the perturbed am-
plitudes in terms of dimensionless amplitudes 6®(%) and
A, ., - In Fourier variables, Eq. (12) becomes

SHy = ( )6 Az(k + ko) + i Ay (k + ko)

0

e (18)

) .
Go = o0 ;maﬂ,kaak.

Solving Eg. (13) and neglecting free-streaming contribu-
tionsto 0G(p., t), weobtain for the perturbed distribution
function

yeB., _ _
5G(ps,t) = _[(72%0 V(AT F0AL ) —AmE5D(k)]
kaGO/apz /
S Qi(t)dt) (19)

Substituting Egs. (17) and (19) into Eqg. (18) yields the
quasilinear kinetic equation for G (p., t):

|5Hk|23Go/3pz

o ). (20)

9 2
EGO pza Zk apz

Note that Eqg. (20) has the form of a diffusion equation
for Go(p.,t) in momentum space.

Linear Dispersion Relation and Energy Equation

The complex oscillation frequency € (¢) is obtained
adiabatically interms of Go(p., t) from the linear DR. For
the present configuration the linear DR is derived in Ref. 9
and 10 asfollows

02]‘121)/?(91«)1)/{—%(Qk)D;rko(Qk) =

(1/2)a [DE_ 1, (@) + Dity i ()]

AT = ERDEQNG +aswpd), (@D
where the dielectric functions Dy, DI _, , D/, ,andthe

effective susceptibility X(") are defined by

Diiyy () = QF — A (k +ko)® — enwy,, (22
(n) _ =—n+1 2 2 dpz kaGO/apz
X () = 7" me wpe/ O — ks (23)
(0)
Qp
DES) = 1+ X, (24)

c2k2
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Herew = dnnge? /Am, a, = eBy,/ymctko and o, =
f df’z 2 Gp. We will now obtain the wave kinetic equa-

tlon The average energy density in the electromagnetic
and electrostatic fields is given by

1
o S TIGEL + 10 =
k

"ymcz

( 9 47T02 Z{‘(;Ak-wfo PlI%[% + (K + ko)?]

AT PRI + ¢k — o)) + 262215 (k) 2}

<eap(® [ (t)at) = Y enlt)

k

(25)

where 1, (¢) isthe spectral energy density. From Eq. (25),
it followsthat ¢ (t) evolves according to

%ek( t) = 2y, (t)ex(t), (26)

where the linear growth rate (¢) is determined adiabati-
caly interms of Gy(p.,t) from Eqg. (21). Equations (20),
(21), and (26) then form a closed quasilinear description
of the system including the effects of linear wave-particle
interactions.

CONSERVATION OF PARTICLE,
MOMENTUM AND ENERGY

The fully nonlinear Vlasov-Maxwell equations possess
three exact conservation relations. These are: average den-

sity,
L
/_L ;Z_; /d3pfb(z7 pat) = const,

total average plasma kinetic energy density plus electro-
magnetic and electrostatic field energy density,

/LQL{/dS (yr — L)me® fu(z,p, 1)

1
+8—7T[(5E)2

(27)

+ (Bo + 6B)?]} = const, (28)

and total average plasma momentum density plus electro-
magnetic field momentum density,

L
dz 3 1
/_L i{/d pp=fo(z,p,t) + RQE x Bo

+JE x 0B),} = const. (29)

We now demonstrate that the conservation relations (27)-
(29) are upheld by the quasilinear kinetic equations derived
in Eq. (20). The distribution function f; is taken to be of
the form of Eq. (4). In Egs. (27)-(29), we expand quanti-
ties such as yrmc? and retain up to second-order termsin
perturbation amplitudes.
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Particle conservation: Substituting Eq. (4) into Eqg. (27),
and making use of Eq. (9), we obtain
o [~ d G = 30
o) p.noGo(pz,t) = 0. (30)
Clearly thisistrue for G /9t given by Eq. (20) since Eq.
(20) is in the form of a diffusion equation in momentum
space and the integrand is an exact differential.
Energy conservation: To show energy conservation from
quasilinear theory, the quantity yrmc? [EQ. (6)] is ex-
panded to second order, by this we have

(KED}:/L2L/ dpano((y — 1)mc2Gy

2

+7m (A% A, + A%5A4,)5G — (5A2 + 5A2)Go]
1 4
277(/105/1 +A%A,)°Gy) (3

In above equation (KED) isthe average plasmakinetic en-
ergy density. Then the quasilinear analog of the exact en-
ergy conservation relation in Eg. (28) can be expressed as

0 0
ot a0 KED) = ot <87r

To verify Eqg. (32), we proceed by taking the derivative
of Eqg. (31) with respect to time, and substituting Eq. (20)
for 9G /0t into the first term on the right-hand side of Eq.
(31). The perturbed distribution function G appearing in
second term is obtained from Eq. (19). Then by use of DR
(21) we can eliminate theintegrals over momentum in favor
of dielectric functions D/, , D{_, , and D{. Relations
between the perturbed amplitudes and dielectric functions
are also used.

[(6E)% + (By + 6B)?]),  (32)

yme? )2 1
2¢e ~ 2mc?

0
~-(KED) = (

Z{(Wk + 7)o [6 AL o P+ Di i 104, 17]
k

i (Wpea)[I6AL g, |* + 1045y, ]

ik — ) 2R3 0B() 2 (2 / w(t)dt). (33)

Substituting Eg. (22) into Eq. (33), and eliminating terms
in the & summations, which are odd functions of &, yields

1 0 ¢ b
s 1 2 e [ nterar

X ([10AL 1o, (1 (07 + ¢ (K + Ko)?)
HOA g, PR + ¢ (k = ko)*)] + [2¢*K2 (D (k) ).

0 Amc?

i (KED) = (5~

(34)
Theright-hand side of Eq. (32) can be evaluated
0 o
S {[=-(E)? + (3B + Bo)?)) =
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”ych
2e

5P gy Leont2 [ (e
k

(AL 1o (120 (O + 2 (K + Ko)?)

HIOAL o P2 (1)2 + ¢ (k = ko))] + [262K2 50 (k) ).
(35)

Comparing Egs. (35) and (34) completes the proof of
Eq. (32).

Momentum conservation: We will now show that the av-
erage total axial momentum is conserved in the quasilinear
theory. To obtain the quasilinear analog of Eqg. (29), Eq.
(4) is substituted into Eq. (29), the resulting equation is
differentiated with respect to time, use is made of Eqg. (12),
and we integrate by part with respect to p,:

”06/ dz[( (A0 4 5A,)~—

AO A
o (A° 4 64,)

0
0z
€0 9 q0 = dp-
e+ oA Ay aay) [P

G|

+2/ dz 1

Where [, 2L (6E x By). = 0. We can expand
the transverse current density —e f d®p(v.€, + vy @) fp in
powers of perturbed quantities. Thus, for the form of fy
given in Eq. (4) and by expanding G and 1/~ to first
order perturbed amplitudes the time rate of change of the
average pI asma momentum density isgiven by

o= [ [

0
0
[A§Ga

((5E x Bg 4+ 0E x 6B), =0.  (36)

m02

0

0A; + AO(FGa 0A,

e? ) )
(AQ6Au+A0A,)Go(AD 6 A, +A]

0 G4+ AY 34,

(37)
correct to second order in the perturbation amplitude. The
analogue equation to Eq. (29) in quasilinear theory is

0 0
ot (PMD) = ot <47r

Rearranging the terms in Eq. (37) and by use of the DR

(21) and the relation between perturbed amplitudes and di-
electric functions we have

1 0 ¢ i
2”02&%:636])(2/0 Vi (t )dt )

Xwi[(k + k0)|6Ak+k ?+

T 3m2ct

(OE x 6B).).  (38)

0 yme?

i (PMP) = ~(5)"

(k= ko)[6 A, 1, [P (39)

We can now evaluate the second term of Eq. (29) by use of
Eas. (3), (14)-(16)

0
8t<4 (

4re

SE x 0B),) =

FEL Theory

MOPPHO12
0 ik, o . 0 . 0
T ; ?(5Am(k, t)aéAz(k, t)+5A, (K, t)a(;Ay(k, t))
]- a t ! !’
92 B Zexp(Q/o Yi(t )dt)
k
xwil(k + ko) [0AL, 4 [* + (k — ko)[6A;_, 7], (40)

Then, Eq. (38) is directly proved by comparing Egs. (39)
and (40).

. ('_ymc2 )2
o 2e

CONCLUSION

In the Raman regime, due to the high density of the elec-
tron beam, the space-charge potential isnot negligible com-
pared to the pondermotive potential. In this paper we have
derived conservation laws in the quasilinear analysis of an
FEL in the presence of the space-charge field of electrons.

The assumption of a broad spectrum of waves ensures
that the saturation takes place through the quasilinear dif-
fusion of electrons in the momentum space rather than by
the particle trapping.

The presence of space-charge wave, that is resonant in
the Raman regime, with the real parts of the frequency
and wave number satisfying the linear DR, modifies the
problem considerably compared to the Compton regimein
which space-charge potential is negligiblein comparison to
the pondermotive potential.

The quasilinear kinetic theory used to derive three ex-
act conservation relations, corresponding to conservation
of (average) particle density, total energy, and total axial
momentum. These results may be used to study the quasi-
linear saturation of a FEL in the raman regime.
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