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Abstract

In a Smith-Purcell Free-Electron Laser (SP-FEL), the
electron beam interacts with the surface mode supported
by a metallic reflection grating to produce coherent radia-
tion. All the previous analyses of SP-FEL had considered
the localization of the surface mode only in the direction
perpendicular to the grating surface and assumed transla-
tional invariance along the direction of grooves of the grat-
ing. In this paper, we include the localization of the surface
mode along the direction of grooves as well and study the
three-dimensional structure of the surface mode in order to
include diffraction effects in the analysis of SP-FELs. Full
three-dimensional Maxwell-Lorentz equations are derived
for the self-consistent nonlinear analysis of SP-FELs.

INTRODUCTION

Smith-Purcell Free-Electron Laser (SP-FEL) is seen as
an attractive option for a compact coherent terahertz source
using low energy electron beam. In an SP-FEL, coherent
electromagnetic radiation is generated due to the interac-
tion of an electron beam with the surface electromagnetic
mode supported by a reflection grating. Several authors
have recently studied this interaction using analytical as
well as numerical techniques [1-4]. In all the previous anal-
yses, the three-dimensional effects have been either ignored
or included only approximately. This is because these anal-
yses consider the interaction of the electron beam with the
two-dimensional surface mode, where the electromagnetic
field has no variation along the direction of grooves of the
reflection grating. The two-dimensional surface mode is
therefore not localized in the direction of grooves, although
it is localized in the direction perpendicular to the grating
surface. We call such surface modes as nonlocalized sur-
face modes in this paper. The diffraction of surface mode
along the direction of grooves, which affects the overlap
with the electron beam and hence the build-up of power
is therefore not included in these analyses. It is important
to include three-dimensional effects in the analysis to ac-
curately study the performance of the system and also to
accurately calculate the start current, which is the thresh-
old electron beam current for coherent growth of power. In
this paper, we study the three-dimensional surface mode,
which is localized in both the transverse directions that are
perpendicular to the direction of propagation. We also dis-
cuss the coupled Maxwell-Lorentz equation to describe the
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interaction of the electron beam with the three-dimensional
surface mode.

In the next section, we discuss the dispersion relation
of an off-axis nonlocalized surface mode supported by a
reflection grating. The construction of three-dimensional
localized surface mode using a combination of off-axis
nonlocalized modes is discussed in the following section.
Maxwel-Lorentz equation for the interaction of the elec-
tron beam with the three-dimensional surface mode is dis-
cussed after that and finally, we present some conclusions
in the last section.

DISPERSION RELATION OF A SURFACE
MODE PROPAGATING OFF-AXIS
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Figure 1: Schematic of a rectangular reflection grating. The
top surface of the grating is in the plane � = 0.

Figure 1 shows the schematic of a rectangular metal-
lic reflection grating having period �� , groove depth �,
and groove width �. We want to study the self-consistent
electromagnetic field supported by this structure. All the
previous analyses of this problem assumed the system to
have translational invariance in the �-direction and hence
these are two-dimensional analyses. Here, we assume an
exp(����) type variation in EM field along the �-direction.
In order to find out the dispersion relation of the surface
mode, we follow our earlier approach [3, 5], where the sur-
face mode appears in terms of singularities of the reflec-
tion matrix �. The EM field in the region � � � is com-
posed of the incident and reflected wave having the follow-
ing Floquet-Bloch expansion for the 	-polarization:

	�
� �

���
����


�� ��� ����� � ����� ���� � �
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Here � is the spectral order, 
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��, �� � 	����, �� � �
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�
� , and the sign of the square root is cho-

sen such that �Re���� � Im����� � �, which is essentially
the outgoing wave condition [6]. The phase velocity of the
zeroth-order component along the �-axis is � in the unit
of the speed of light �. Note that the plane wave compo-
nents described by Eqs. (1-2) are in general, propagating
off-axis in the �� plane. The total electromagnetic field ��
and �	 in the region � � � is obtained by combining the
contribution from the incident and reflected waves. In ad-
dition to 	�, the EM field will have �� , ��, 	� and 	�

components also. Defining �� � ����� �� ��� ������ �
��

and �	 � ����� �� ��� ������ �
��, these components are
given by [7]

��� � ������ � ��
����������� (3)
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��� � ������ � ������������ (6)

where �� is the permeability of vacuum. Note that
since we are considering 	-polarization as opposed to
�-polarizationn due to its strong interaction with co-
propagating electron beam, we take �� = 0.

The electromagnetic field inside the grooves can be ex-
pressed as a superposition of cavity modes, and the ex-
pression for �� in the � 	
 groove ���� � � � � �
��� � ���, where � � �� � � can be written as [8]
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where �� � ����� � � ��� � ��� � �
�
� �
�
�
� �� �����

�. The remaining components of EM field inside the groove
can be determined in the same way as described above by
Eqs. (3-6). In the metallic portion of the grating, the elec-
tromagnetic field can be assumed to be vanishing. The fol-
lowing expression for the reflection matrix � is obtained
by satisfying the boundary condition at the interface �=0
for �� and	�:

� � �! � "�
��

�! � "�� (8)

where ! is the identity matrix and " is the impedance ma-
trix given by
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Here, �� in the complex conjugate of �, #� � �� #� ��� �
��	, and � is given by
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where %� � ����������	. The above expression for �
has the same form as given in Ref. [8] except that it is now
generalized to include non-zero value of ��. We make an
important observation here that the effect of introducing a
finite value of �� is that 
 in earlier expression simply gets
replaced with

�

� � �����. With the help of this replace-

ment rule, we can use the earlier calculation performed for
the �� = 0 case even for a finite �� case.
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Figure 2: Typical dispersion relation for a rectangular re-
flection grating for a surface mode propagating off-axis.

Next, we discuss the dispersion relation of the surface
mode. The surface mode appears as a singularity in the re-
flection matrix. For example, for a given value of 
 and
��, we can find a value of �� for which the reflection ma-
trix becomes singular. This means that reflected compo-
nents given by Eq. (2) are supported self-consistently by
the grating without the need of incident waves. Also, the
reflected components corresponding to different values of
� in Eq. (2) add in a certain fixed ratio of amplitudes such
that the boundary conditions are satisfied on the grating sur-
face [3]. In this way, by studying the singularity of �, we
can find out the dispersion relation of the surface mode. We
have earlier discussed the calculation of dispersion relation
for �� = 0 case in Refs. [3,5]. The same calculation can be
used to get the dispersion relation for a finite �� case, using
the replacement rule that we have discussed in this section.
Fig. 2 shows a typical dispersion relation plotted for a cer-
tain set of grating parameters. For a given value of 
 and
��, there is a certain fixed value of �� and also the values of

��
� for all values of � are fixed and can be calculated.
As has been discussed earlier [1, 3], the group velocity of
the surface mode co-propagating with low energy electron
beam is negative, meaning that the energy flows backward
if the phase velocity is in the forward direction.

Hence, in this section, we have discussed surface mode
which propagates off-axis, but is still nonlocalized in the �
direction. In the next section, we use this to construct a set
of fully localized surface modes.

Proceedings of FEL 2007, Novosibirsk, Russia MOPPH010

FEL Theory

39



THREE-DIMENSIONAL STRUCTURE OF
THE LOCALIZED SURFACE MODE

In the last section, we have discussed the surface mode
that is composed of plane waves which propagate, in gen-
eral, off-axis in the �� plane. We can combine such surface
modes with suitable weight function in �� to obtain a mode
that is localized in the � direction as follows

��
� �

�
�

�
���
����� �������� � ����� 
���� (10)

Note that it is here understood that all the field quantities
have ������
�� type time dependence. Here, � �

� stands
for the total longitudinal electric field and 
� is real, mean-
ing that the field decays and is localized in the � direction.
Note that for a given ��, the relative magnitudes of the am-
plitude 
� (i.e., the ratio 
��
� for all values of �) as
well as the relation between �� and 
 can be calculated as
mentioned in the last section. The �� and 
� are therefore
functions of �� in the above integral for a given value of 
.
In the above expression, only the zeroth-order component
corresponding to � � � term interacts strongly with the
co-propagating electron beam and we will therefore focus
on this term only in the remaining of the paper. However,
all other components are present there with an amplitude
in a fixed ratio with the amplitude of the zeroth-order com-
ponent such that boundary conditions are satisfied at the
grating surface.

Let us introduce the angle & in the �� plane via �� �
�� ���&. Under the paraxial approximation & 	 �, we
obtain the following expressions for the &-dependence of
�� and 
�:

���&� � ���� �
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where we have simplified the notations by writing �� �
����� and 
� � 
����. Here �� is the magnitude of the
group velocity (�
���� for �� � �) of the surface mode
in the unit of c. As mentioned earlier, the group velocity
is negative. We can substitute the above expressions for ��
and 
� in the Eq. (10) and only retain the � � � term and
get the following expression for the field in the zeroth-order
component:
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We note that ��
� appears as a Fourier transform in &

of the underbraced term in the above expression. We can
take the orthonormal set of Gauss-Hermite functions for

��&� and obtain a set of Gauss-Hermite orthonormal sur-
face modes which are localized in the � direction. This is
exactly the same way in which one can get the localized

Gauss-Hermite modes for a laser beam in free space [9].
Here, we consider only the fundamental Gaussian mode by
choosing
��&� � �����&���'��� for which we obtain the
following expression for the rms beam size �� [10]

��
���� �� � ��

���� �� � ��
�����

�� (14)

Note that the above equation is in the form of paraxial
diffraction with a waist at � = 0, the rms waist beam size
of ����� ��, and an rms diffraction angular divergence of
�����. The quantities on the right-hand side of Eq. (14)
are determined by the following relations:
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These reduce to the well-known relations between the rms
size and angular divergence in free space when 
��
 � �.
Eq. (14) can also be written in a form familiar in paraxial
optics discussions:

��
���� �� �

�
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�� 

�"� �
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�� (18)

where the Rayleigh range "� is given by

"� �
��
�� 


�
��
���� ��� (19)

We have thus derived in this section the three-
dimensional structure of fully localized surface mode. The
fundamental Gaussian mode is discussed in detail and the
analysis can be easily extended to derive the structure of
higher order Gauss-Hermite surface modes. Note that com-
pared to Gauss-Hermite modes propagating in free space,
the wavelength � is here replaced with ����.

THREE-DIMENSIONAL
MAXWEL-LORENTZ EQUATIONS

We now discuss the interaction of the localized mode
that we discussed in the last section with the co-
propagating electron beam. For the two-dimensional case,
where the system is assumed to have translational invari-
ance in the � direction, we had earlier derived the coupled
nonlinear Maxwell-Lorentz equation for the interaction of
the surface mode with the sheet electron beam [3]. Us-
ing the Maxwell equation with the source term and using
the slowly varying envelope approximation and the parax-
ial approximation, we can write down the equation for the
evolution of the electromagnetic field given by Eq. (13).
Leaving the details of the derivation to another publica-
tion [11], we present here the final result:
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where "� � ���� is the characteristic impedance of free
space, ( is the residue of the singularity associated with
the surface mode as defined in Ref. [3], *� is the electron
volume current density at the given location, % is the phase
of the electron and �
 
 
� denotes averaging over electrons.
Note that �� is the amplitude of the electric field in the
zeroth-order component of the surface mode at the grat-
ing surface, i.e., � � �. Once �� is known, one can cal-
culate 
��&� using Eq. (13) and then as discussed earlier
in this paper, we can calculate 
��&� for all �. Substi-
tuting these in Eq. (10), we get the total electromagnetic
field. Note that by construction, this electromagnetic field
satisfies the boundary condition on the grating surface and
also evolves due to interaction with co-propagating elec-
tron beam as given by Eq. (20). It is interesting to observe
that the structure of this equation is similar to that for the
case of conventional FELs. The second term on the left
side this equation represents diffraction and compared to
the conventional FEL case, here � is replaced with ���.
This is same as we observed in the last section, where the
same replacement occurs in the formula for the Rayleigh
range in Eq. (19).

The equation for the evolution of phase and energy of
the electrons, as derived earlier [3] are given by

�

��
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$��� � ���� (21)

�

��

�%�
��

�
�%�
��

�
�

�	)�
�)� � )��

)�
� (22)

where )� is the energy of the electron resonant with the
surface mode in the unit of rest mass energy, ) � is the en-
ergy of the �	
 electron in the unit of rest mass energy
and %� is the phase of �	
 electron. Note that here we
have ignored space-charge term in Eq. (21) for simplic-
ity. Eqs. (20-22) are the coupled three-dimensional time-
dependent Maxwell-Lorentz equations, which describe the
interaction between the surface mode and the electron
beam. If there are focusing forces, there will be equations
for the evolution of transverse dynamical variables of elec-
trons, in addition to Eqs. (21-22).

Finally, we give the expression for the power flowing in
the surface mode in the backward direction. In general,
power will flow along � direction also in addition to � di-
rection in 3-D case. However, under paraxial approxima-
tion, we can assume that power flowing along the � direc-
tion is not very significant. The expression for the power
, flowing along the (negative) � direction, which is further
generalization of the expression obtained for 2-D case in
Refs. [3,12] is given by

, � 	
�)

"�(

�

�� 


�
��� (23)

Note that the above expression is for the total power corre-
sponding to EM field in all the components corresponding
to diiferent values of � in Eq. (10).

CONCLUSIONS

In this paper, we have discussed the three-dimensional
surface electromagnetic modes supported by a reflection
grating that are localized along the direction of grooves as
well as in the direction perpendicular to the grating surface.
We have then discussed the nonlinear three-dimensional
time-dependent coupled Maxwell-Lorentz equations for
the interaction of the surface mode with the electron beam.
These equations can be numerically solved to study the
evolution of power in an SP-FEL taking diffraction effects
into account, which has so far not been accurately stud-
ied. We can linearize the corresponding Maxwell-Vlasov
equation and solve it approximately to get an analytic ex-
pression for start current taking three-dimensional effects
into account. This will be taken up in the future.

REFERENCES

[1] H. L. Andrews and C. A. Brau, Phys. Rev. ST Accel. Beams
7 (2004) 070701.

[2] J. T. Donohue and J. Gardelle, Phys. Rev. ST Accel. Beams
8 (2005) 060702.

[3] V. Kumar and K.-J. Kim, Phys. Rev. E 73 (2006) 026501.

[4] D. Li et al., Phys. Rev. ST Accel. Beams 9 (2006) 040701.

[5] V. Kumar and K.-J. Kim, Proceedings of PAC05 (2005)
1616.

[6] Electromagnetic Theory of gratings, edited by R. Petit
(Springer-Verlag, Berlin, 1980).

[7] P. M. Van den berg, Appl. Sci. Res. 24, (1971) 261.

[8] L. Schachter and A. Ron, Phys. Rev. A 40, (1989) 876.

[9] A. Seigman, Lasers, University Science Books, Sausalito,
1986.

[10] K.-J. Kim and V. Kumar, to appear in Phys. Rev. ST Accel.
Beams.

[11] V. Kumar and K.-J. Kim, under preparation.

[12] V. Kumar and K.-J. Kim, Proceedings of FEL05 (2005) 274.

Proceedings of FEL 2007, Novosibirsk, Russia MOPPH010

FEL Theory

41


