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Abstract
We propose an analytical characterization of undu-

lator radiation near resonance, when the presence of
the vacuum-pipe affects radiation properties, as for
the far-infrared undulator beamline at FLASH, that is
designed to deliver pulses in the THz range. Such
line can be used for pump-probe experiments where
THz pulses are naturally synchronized to the VUV
pulse from the FEL, as well as the development of
novel electron-beam diagnostics techniques. Since the
THz radiation diffraction-size exceeds the vacuum-
chamber dimensions, characterization of infrared ra-
diation must be performed accounting for the pres-
ence of a waveguide. We developed a theory of un-
dulator radiation in a waveguide based on paraxial
and resonance approximation. We solved the field
equation with a tensor Green’s function technique,
and extracted figures of merit describing the influ-
ence of the vacuum-pipe on the radiation pulse as a
function of the problem parameters. Our theory, that
makes consistent use of dimensionless analysis, al-
lows treatment and physical understanding of many
asymptotes of the parameter space, together with their
region of applicability. A more detailed report of our
study is given in [1].

INTRODUCTION AND THEORY

The accelerator complex at FLASH produces ultra-
short bunches approaching sub-100 fs duration.
FLASH will soon operate together with a FIR elec-
tromagnetic undulator providing coherent FIR radia-
tion intrinsically synchronized with the VUV pulses.
The wavelength range (λ = 60 ÷ 200 μm) will over-
lap with a large part of the THz-gap. This will allow
pump-probe experiments combining FIR and VUV ra-
diation, and non-destructive electron beam diagnos-
tics. Vacuum chamber effects are expected to play
an important role at longer wavelengths. Optimiza-
tion of the radiation transport system calls for a pre-
cise characterization of THz pulses along the photon
beamline. In the present work we focus on the char-
acterization of undulator radiation from a filament
beam (as for the FIR line at FLASH) in presence of a
waveguide. One should solve the field equations in
paraxial approximation with proper boundary condi-

tions, e.g. D[�̃E⊥(z, �r⊥)] = �f (z, �r⊥), where (�n × �̃E⊥)|S = 0

and (�∇⊥ · �̃E⊥)|S = 0. Here S is the internal surface of the
pipe, D ≡ (∇⊥2 + 2iω/c · ∂/∂z), ∇⊥2 being the Lapla-

cian operator over transverse cartesian coordinates
and �f = 4πe/c · exp{i

∫ z

0 dz̄ω/[2γ2
z(z̄)c]}[iω/c2 · �v⊥(z) −

�∇⊥]δ(�r⊥−�r′⊥(z)). Solution must accounting for the ten-
sorial nature of the Green’s function. In the UR case,
the resonance approximation can be exploited too. We
thus consider planar undulator with a large number of
undulator periods and a frequency range of interest
close to the fundamental harmonic, where the free-
space field exhibits horizontal polarization (for un-
dulator field in the vertical direction) and azimuthal
symmetry. An explicit expression for the field is cal-
culated as a superposition of TE and TM modes. We

introduce normalized units: �̂E⊥ = [−c2/(AJJωeθs)]
�̃E⊥,

Ĉ = 2πNwΔω/ωr, ẑ = z/Lw, r̂ = r/
√

Lw�, Ω = R2/Lw�,
Ĉμkμ

2
1k/(2Ω) and Ĉνk = ν2

1k/(2Ω). Here Ω = R2/(�Lw)
is the main parameter of our theory, comparing the
pipe area with the radiation diffraction area, while
μmk and νmk are, respectively, solutions of J′m(μmk) = 0
and Jm(νmk) = 0. We obtain for Êx,y(r̂, φ, ẑ):

Êx = i
∞
∑

k=1

{

Aμ
k (ẑ)
[
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μ1kr̂√
Ω

)

+ J2

(
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cos(2φ)
]

+Aν
k(ẑ)
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)
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(1)

and

Êy = i
∞
∑

k=1

{

Aμ
k (ẑ)J2

(

μ1kr̂√
Ω

)

−Aν
k(ẑ)J2

(

ν1kr̂√
Ω
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sin(2φ),

(2)

where we setAμ
k (ẑ) = Ĉμk exp[−iĈμk ẑ]/[(μ2

1k − 1)J2
1(μ1k)]

sinc[1/2(Ĉμk + Ĉ)] and, moreover, Aν
k(ẑ) =

Ĉνk exp[−iĈνk ẑ]/[ν2
1k J2

0(ν1k)]sinc[1/2(Ĉνk + Ĉ)]. The
sinc(·) functions in the expressions for Aμ,ν

k is conse-
quence of instantaneous switching of the undulator
field. However, our theory applies with a finite
accuracy related to the use of the resonance approxi-
mation. We thus introduce a spatial frequency filter
in the field by redefining

Aμ
k (ẑ) =

Ĉμk exp[−iĈμk ẑ]

(μ2
1k − 1)J2

1(μ1k)
F
{

S(ẑ′),
(

Ĉμk + Ĉ
)}

(3)

and
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Hard-Edge Case

Figure 1: Three-dimensional view of the virtual source
in the free-space limit for Δ = 0 (hard-edge case) and
Ĉ = 0 (perfect resonance) .

Figure 2: Intensity profiles of the virtual source (ẑ = 0)
at large values of Ω = R2/(�Lw) for different values
of Δ and Ĉ = 0 (perfect resonance). This 2D plot is
obtained cutting the 3D intensity profile at ŷ = 0 (i.e.
at φ = 0).

Aν
k(ẑ) =

Ĉνk exp[−iĈνk ẑ]

ν2
1k J2

0(ν1k)
F
{

S(ẑ′),
(

Ĉνk + Ĉ
)}

. (4)

HereF {S(ẑ′), (Ĉμ,νk + Ĉ)} is the Fourier transform of the
function S with respect to (Ĉμ,νk + Ĉ). The where func-
tion S(z′) introduces some smoothing of the rectangu-
lar undulator profile on a scale of λw. We model S(ẑ′)
as a constant function along the undulator length with
exponentially decaying edges on a typical distance Δ.
The value of Δ is chosen to cut off high spatial fre-
quencies that are outside the region of applicability
of the resonance approximation, i.e. Δ ∼ 1/Nw. A
three-dimensional view of the virtual source in the
middle of the undulator in the free-space limit Δ = 0
(hard-edge case) is presented in Fig. 1, while intensity
profiled for different values of Δ are given in Fig. 2.

Figure 3: Intensity profiles of the virtual source (ẑ = 0)
at different values of Ω = R2/(�Lw) for Δ = 0.1 and
Ĉ = 0 (perfect resonance).

We also studied the impact of wall-resistance effects.
We concluded that propagation through the pipe is
strongly affected by wall-resistance effects even for rel-
atively large values of Ω. This effect strongly depends
on the material considered. Estimations allowed us to
formulate the recommendation that the internal part
of the vacuum pipe for the infrared undulator line at
FLASH should be copper-coated.

RESULTS

Some figure of merit should be extracted from the
full information carried by the expression for the field
about how the metallic pipe influences radiation prop-
erties. We separately studied, for horizontal and verti-
cal polarization components, two-dimensional inten-
sity distributions on a transverse plane at arbitrary
distance from the undulator, for different choices of
the problem parameter. These plots are shown in Fig.
3 and Fig. 4. Another figure of merit of interest is the
ratio between the power density for a specific value
of Ω integrated over the waveguide cross-section and
the angle-integrated power density in free space:

Ŵ =

∫

d�̂r⊥
∣

∣
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Figure 4: Intensity profiles of the virtual source (ẑ = 0)
at different values of Ω = R2/(�Lw) for Δ = 0.001 and
Ĉ = 0 (perfect resonance).

Figure 5: Plot of Ŵ as a function of Ω = R2/(�Lw) for
Ĉ = 0 (perfect resonance) at different values of Δ.

Figure 6: Plot of Ŵ as a function of Ĉ = 2πNwΔω/ωr

for Ω = 2.0 at Δ = 0.1.

Figure 7: Plot of Ŵ as a function of Ĉ = 2πNwΔω/ωr for
Ω = 2.0 at different values of Δ = 0.01 and Δ = 0. The
far-field limit (Ω −→ ∞) is also shown for comparison
(dotted line).

We studied Ŵ as a function of Ω at perfect resonance
(see Fig. 5). Conversely, once Ω is fixed, one can
investigate how the total power changes as a function
of the detuning from resonance (see Fig. 6 and 7).

We also proposed a comparison between the magni-
tude of the horizontally and vertically polarized fields,
defined as

Px(r̂) = Abs
[

Êx (r̂, 0, 0)
]

∣

∣

∣

∣

Ω−→∞

(6)

and

Py(r̂,Ω) = Abs [Êy
(r̂,
π
4
, 0)]∣
∣

∣

∣

Ω

. (7)
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Figure 8: Comparison of Px (dotted line) and Py (solid
line) for Δ = 0.1 at different values of Ω = R2/(�Lw)
and Ĉ = 0 (perfect resonance). Plots refer to the virtual
source position (ẑ = 0).

Figure 9: Comparison of Px (dotted line) and Py (solid
line) for Δ = 0.01 at different values of Ω = R2/(�Lw)
and Ĉ = 0 (perfect resonance). Plots refer to the virtual
source position (ẑ = 0).

Plots are given in Fig. 8 and Fig. 9.
Finally, evolution of the intensity profiles at Ω = 2

and Ĉ = 0 is given in Fig. 9.

CONCLUSIONS

We presented a theory of undulator radiation within
a waveguide and we exemplified it in the case of
the infrared undulator beamline at FLASH. Relation
between current electromagnetic sources and field is
more complicated with respect to the free-space case.
Analysis of the problem is performed with the help of

Figure 10: Intensity profiles at different values of ẑ =

z/Lw for Ω = 2, Ĉ = 0 (perfect resonance) and Δ = 0.1.

a tensor Green’s function, complicating equations that
now depend on the undulator type and on the waveg-
uide geometry. We treated a circular waveguide in
particular, and we implemented the planar undula-
tor case within the applicability region of the reso-
nance approximation. The electric field was found
as a superposition of the waveguide modes, and was
studied for different values of parameters. The main
parameter involved in the problem is the waveguide
parameter Ω. When Ω is comparable, or smaller than
unity, waveguide effects become important, under the
assumption of a perfect conductor.

For details on our work we refer the interested
reader to [1].
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