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Abstract

Nonlinear Harmonic Generation (NHG) is of im-
portance for both short wavelength FELs, in relation
with the achievement of shorter wavelengths with a
fixed electron-beam energy, and high-average power
FEL resonators, in relation with destructive effects of
higher harmonics radiation on mirrors. We present a
treatment of NHG from helical wigglers with partic-
ular emphasis on the second harmonic. Our study is
based on an analytical solution of Maxwell’s equa-
tions, derived with the help of a Green’s function
method. We demonstrate that NHG from helical wig-
glers vanishes on axis. Our conclusion is in contrast
with literature, that includes a kinematical mistake
in the description of the electron motion. A detailed
report with relevant references is given in [1].

INTRODUCTION

NHG is of undisputed relevance in the field of FELs.
It is generated by bunching of the electron beam at
higher harmonics, driven by interaction with the fun-
damental. In general, NHG can be treated in terms of
an electrodynamical problem where Maxwell’s equa-
tions are solved with given macroscopic sources in
the space-frequency domain. These sources are ob-
tained through the solution of self-consistent equa-
tions for electrons and fields. Further on, solution
of Maxwell’s equations characterizes harmonic radi-
ation in the space-frequency domain. The depen-
dence of sources in the space-frequency domain on
transverse and longitudinal coordinates is compli-
cated because is the result of the above-mentioned
self-consistent process. However, here we deal with
an FEL setup where an ultrarelativistic electron beam
is sent, in free space, through an undulator with many
periods. Then, paraxial and resonance approximation
can be applied. In particular, for a fixed transverse po-
sition, the longitudinal dependence is always slow on
the scale of an undulator period. NHG has been dealt
with in the case of a planar wiggler, both theoreti-
cally and experimentally. Odd harmonics have maxi-
mal power on axis1 and are linearly polarized. Even
harmonics have been shown to have vanishing on-
axis power and to exhibit both horizontal and vertical
polarization components. Here we present the first
theory of NHG from helical wigglers, based on a so-

1Here we assume that the bunching wavefront is perpendicular
to the (longitudinal) FEL axis.

lution of Maxwell’s equations in the space-frequency
domain, obtained with a Green’s function technique.

NHG IN HELICAL WIGGLERS

Analysis of the harmonic generation mechanism

We use paraxial Maxwell’s equations in the
space-frequency domain to describe radiation from
ultra-relativistic electrons. Let us call the trans-
verse electric field in the space-frequency domain
�̄E⊥(z, �r⊥, ω), where�r⊥ = x�ex+ y�ey and z identify a point
in space. From the paraxial approximation follows

that the electric field envelope �̃E⊥ = �̄E⊥ exp [−iωz/c]
does not vary much along z on the scale of the reduced
wavelength � = λ/(2π). Maxwell’s equation in parax-

ial approximation reads: D
[
�̃E⊥(z, �r⊥, ω)

]
= �f (z, �r⊥, ω),

where D ≡ ∇⊥2 + (2iω/c)∂/∂z, ∇⊥2 being the Lapla-
cian operator over transverse cartesian coordinates.
The source-term vector �f (z, �r⊥) is specified by the
trajectory of the source electrons, and can be written
in terms of the Fourier transform of the transverse
current density, �̄j⊥(z, �r⊥, ω), and of the charge density,

ρ̄(z, �r⊥, ω), as �f = −4π[(iω/c2)�̄j⊥ − �∇⊥ρ̄] exp[−iωz/c].

In this paper we will treat �̄j⊥ and ρ̄ as macroscopic
quantities, without investigating individual electron

contributions. �̄j⊥ and ρ̄ are regarded as given data,
that can be obtained from any FEL code. Codes
actually provide the charge density of the modulated
electron beam in the time domain ρ(z,�r⊥, t). A
post-processor can be used in order to perform the
Fourier transform of ρ that can always be presented
as ρ̄ = −ρ̃(z, �r⊥ − �r′o⊥(z), ω) exp [iωso(z)/vo], where the
minus sign on the right hand side is introduced for no-
tational convenience only. Quantities �r′o⊥(z), so(z) and
vo pertain a reference electron with nominal Lorentz
factor γo that is injected on axis with no deflection and
is guided by the helical undulator field. Such electron
follows a helical trajectory �r′o⊥(z) = r′ox�ex + r′oy�ey.
We assume that r′ox(z) = K/(γokw)[cos(kwz) − 1] and
r′oy(z) = K/(γokw) sin(kwz), where K = λweHw/(2πmec2)
is the undulator parameter, λw = 2π/kw being
the undulator period, (−e) the negative electron
charge, Hw the maximal modulus of the undulator
magnetic field on-axis, and me the rest mass of the
electron. The correspondent velocity is described
by �vo⊥(z) = vox�ex + voy�ey. Finally, so(z) is the curvi-
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linear abscissa measured along the trajectory of
the reference particle. Introduction of ρ̃ is useful
when ρ̃ is a slowly varying function of z on the
wavelength scale. This property is granted by the
fact that the charge density distribution under study
originates from an FEL process. From this fact it
also follows that ρ̃ is slowly varying on the scale of
the undulator period λw and is peaked around each
harmonic of the fundamental ωr = 2kwcγ̄2

z , that is
fixed imposing resonance condition between electric
field and reference particle. The word ”peaked”
means that the bandwidth of each harmonic compo-
nent obeys Δω/(hωr) � 1 for each positive integer
value h. Here γ̄z = 1/

√
1 − v2

oz/c2 is the longitudinal
Lorentz factor. Finally, the relative deviation of the
particles energy from γomec2 is small, i.e. δγ/γo � 1.
It follows that for a generic motion we have �f =
4π exp

[
i
∫ z

0 dz̄ω/(2γ̄2
zc)

] [
iω/(c2)�vo⊥(z) − �∇⊥

]
ρ̃[z;�r⊥ −

�r′o⊥(z)]. We account for a possible deflection angle
�η(c) in the the trajectory of the reference electron.
Therefore �r′o⊥(z) −→ �r(c)

⊥ (z, �η(c)) = �r′o⊥(z) + �η(c)z
and �vo⊥(z) −→ �v⊥(z, �η(c)) = �vo⊥(z) + c�η(c). Using
�v⊥(z, �η(c)) in place of �vo⊥(z) implies that γz(z, �η(c)) is
now a function of both z and �η(c). In particular,
1/γ2

z(z, �η(c)) = 1 − v2
z(z, �η(c))/c2, where v2

z = v2 − v2
⊥

is the square of the electron longitudinal velocity.
It follows that 1/γ̄2

z in �f should also be substituted
by 1/γ2

z(z, �η
(c)). With these prescriptions, we find a

solution to paraxial Maxwell’s equation with the help
of a Green’s function technique, without any other
assumption about the parameters of the problem.
We are interested in the total power emitted and
in the directivity diagram of the radiation in the
far zone. Thus, we introduce the observation angle
�θ = �r⊥o/zo, setting θ ≡ |�θ|, taking the limit for zo � Lw,
where Lw = Nwλw is the undulator length. Moreover,
we are interested in studying frequency near the
fundamental harmonic ωr = 2kwcγ̄2

z or its h-th integer
multiple. We specify ”how near” the frequencyω is to
the h-th harmonic by defining a detuning parameter
Ch = ω/(2γ̄2

zc) − hkw = Δω/ωrkw. Here ω = hωr + Δω.
Altogether, using Anger-Jacobi expansion, we find

�̃E⊥ =
iω
czo

∫ ∞

−∞
dl′x

∫ ∞

−∞
dl′y

∫ Lw/2

−Lw/2
dz′ρ̃

(
z′, l′x, l

′
y

)

× exp

⎧⎪⎪⎨⎪⎪⎩i
ω
c

⎡⎢⎢⎢⎢⎢⎢⎣zo

(
θ2

x + θ
2
y

)
2

+
K(θx − η(c)

x )
kwγ

− (θxl′x + θyl′y)

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

×
∞∑

m,n=−∞
Jm(u)Jn(v) exp

[ iπn
2

]
exp [i(n +m + h)kwz′]

× exp
{
i
[
Ch +

ω
2c

(
θx − η(c)

x

)2
+
ω
2c

(
θy − η(c)

y

)2
]
z′
}

×
{[

K
2iγ

(
exp[ikwz′] − exp[−ikwz′]

)
+

(
θx − η(c)

x

)]
�ex

−
[

K
2γ

(
exp[ikwz′] + exp[−ikwz′]

) − (
θy − η(c)

y

)]
�ey

}
(1)

with u = −Kω(θy − η(c)
y )/(cγkw) and v =

−Kω(θx − η(c)
x )/(cγkw). Whenever Ch + ω/(2c)[(θx −

η(c)
x )2 + (θy − η(c)

y )2]� kw, the second phase factor in z′

in Eq. (1) (the one containing Ch) is varying slowly
on the scale of the undulator period λw. As a result,
simplifications arise when Nw � 1, because fast
oscillating terms in powers of exp[ikwz′] effectively
average to zero. We further select frequencies such
that |Δω|/ωr � 1, i.e. |Ch| � kw. Note that this condi-
tion on frequencies automatically selects observation
angles of interest h(�θ − �η(c))2 � 1/γ̄2

z. Independently
of the value of K and for observation angles of interest
we have |v| � 1 and |u| � 1, and we can expand Jn(v)
and Jm(u) in Eq. (1).

From now on we consider the case h = 2. Per-
forming expansion, and accounting for terms giving
a non-zero contribution after integration in dz′ we ob-
tain

�̃E⊥ =
iω2

(
�ex + i�ey

)
K2

2czoωr(1 + K2)

[(
θx − η(c)

x

)
+ i

(
θy − η(c)

y

)]
×

∫ ∞

−∞
dl′x

∫ ∞

−∞
dl′y

∫ Lw/2

−Lw/2
dz′ρ̃

(
z′, l′x, l

′
y

)
exp [iC2z′]

× exp

⎧⎪⎪⎨⎪⎪⎩i
ω

c

⎡⎢⎢⎢⎢⎢⎢⎣zo

(
θ2

x + θ
2
y

)
2

−
(
θxl′x + θyl′y

)⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

× exp
{
i
ω
2c

[(
θx − η(c)

x

)2
+

(
θy − η(c)

y

)2
]
z′
}
. (2)

The electric field is left circularly polarized and van-
ishes at �θ = �η(c). Polarization characteristics are the
same as for the fundamental harmonic, although the
fundamental does not vanish at �θ = �η(c).

We conclude our analysis of NHG in helical wig-
glers studying on-axis harmonic generation. We can
do so in all generality, i.e. for any harmonic number,
with the help of Eq. (1). We set �θ − �η(c) = 0. It follows
that Eq. (1) can be rewritten as

�̃E⊥ =
iω
czo

∫
d�l′

∫ Lw/2

−Lw/2
dz′ρ̃

(
z′,�l′

)
exp [iChz′]

×
{[

K
2iγ

(
exp[i(h + 1)kwz′] − exp[i(h − 1)kwz′]

)]
�ex

+

[
− K

2γ

(
exp[i(h + 1)kwz′] + exp[i(h − 1)kwz′]

)]
�ey

}
.
(3)

Since ρ̃ is a slowly function of z′ on the scale of the
undulator period and Ch � kw, we see by inspection
that, after integration in dz′, one obtains non-zero on-
axis field only for h = 1. This result is in open contrast
with what reported in reference [2]: we will address
this fact in the discussion section.
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Analysis of a simple model
We treat a particular case to exemplify our results.

We consider the case when C2 = 0 (i.e. ω = 2ωr)
and ρ̃ = Ioa2/(2πcσ2

⊥) exp [−l′2x + l′2y/(2σ
2
⊥)] exp[i2ωr/c ·

(η(c)
x l′x + η

(c)
y l′y)]HLw(z), with HLw a window function

equal unity inside the undulator and zero everywhere
else. Here Io is the bunch current, a2 is a constant de-
termining the strength of the bunching and σ⊥ the rms
transverse size of the electron beam. This corresponds
to a modulation wavefront perpendicular to the direc-
tion of motion of the beam. Direct substitution in Eq.
(2) and calculations yield

�̃E⊥ =
2iIoa2Lwωr

(
�ex + i�ey

)
c2zo

(
K2

1 + K2

)
×

[(
θx − η(c)

x

)
+ i

(
θy − η(c)

y

)]
exp

[
i
ωr

c
zo(θ2

x + θ
2
y)
]

× exp
{
−

2σ2
⊥ω

2
r

c2

[(
θx − η(c)

x

)2
+

(
θy − η(c)

y

)2
]}

×sinc
{Lwωr

2c

[(
θx − η(c)

x

)2
+

(
θy − η(c)

y

)2
]}
. (4)

Going back to our particular case in Eq. (4), a
subject of particular interest is the angular distri-
bution of the radiation intensity, which will be de-
noted with I2. Upon introduction of normalized
quantities θ̂x,y =

√
2ωrLw/c θx,y =

√
8πNw γ̄zθx,y,

η̂(c)
x,y =

√
2ωrLw/c η

(c)
x,y =

√
8πNw γ̄z η

(c)
x,y and of the Fres-

nel number N = 2ωrσ2
⊥/(cLw), one obtains

I2 ∝
∣∣∣∣�̂θ − �̂η(c)

∣∣∣∣2 exp
{
−N

∣∣∣∣�̂θ − �̂η(c)
∣∣∣∣2
}

sinc2

{
1
4

∣∣∣∣�̂θ − �̂η(c)
∣∣∣∣2
}
(5)

In the limit for N � 1, Eq. (5) gives back the directiv-
ity diagram for the second harmonic radiation from a
single particle. The directivity diagram in Eq. (5) is
plotted in Fig. 1 for different values of N as a func-

tion of |�̂θ − �̂η
(c)
|, normalized to the maximal intensity

Imax
2 at each value of N. The next step is the calcula-

tion of the second harmonic power that is given by

W2 = c/(2π)
∫ ∞
−∞ dxo

∫ ∞
−∞ dyo|

�̃E⊥(zo, xo, yo)|2. It is conve-
nient to present the expressions for W2 in a dimen-
sionless form. After appropriate normalization it is a
function of one dimensionless parameter only, that is
Ŵ2 = F2(N) = ln [1 + 1/(4N2)]. Here Ŵ2 = W2/W

(2)
o is

the normalized power, while the normalization con-
stant W(2)

o is given by W(2)
o = (2K2/1 + K2)2(I2

o/c)a
2
2. The

function F2(N) is plotted in Fig. 2. The logarithmic
divergence in F2(N) in the limit for N � 1 imposes a
limit on the meaningful values of N. However, in the
case N < N−1

w we deal with a situation where the di-
mensionless problem parameter N is smaller than the
accuracy of the resonance approximation ∼ N−1

w , and
for estimations we should replace ln (N) with ln (N−1

w ).

Figure 1: Directivity diagram for the intensity.

Figure 2: Illustration of the behavior of F2(N).

DISCUSSION

NHG in a helical wiggler has been addressed in [2],
where a numerical study-case guarantees that parax-
ial and resonance approximation can be applied. The
main result of [2] is that characteristics of helical un-
dulator radiation from an extended source, i.e. a
bunched electron beam, are drastically different com-
pared to those from a single electron. In particular,
NHG does not vanish on-axis, in open contrast with
our conclusions. In our understanding, results in [2]
are incorrect. Any linear superposition of a given
field harmonic from single electrons conserves single-
particle characteristics like parametric dependence on
undulator parameters and polarization. In particular,
since field harmonics from a single electron vanishes
on-axis, they must vanish on-axis for the linear super-
position as well. This also applies in the case of NHG,
because the dependence of charge and current density
distributions of the bunched beam on the longitudi-
nal coordinate is slow on the scale of the undulator
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period. This argument suggests that results in refer-
ence [2] are incorrect. A flaw can be pinpointed in
the azimuthal resonance condition proposed in [2]:
”The azimuthal electron motion in helical wigglers is
θ = kwz (kw is the wave number for the wiggler period
λw), which couples to circularly polarized waves that
vary as exp(iφh), where φh = kz + hθ − ωt is the wave
phase. Hence, the phase along the particle trajecto-
ries varies as φh = (k + hkw)z − ωt, and the hth order
azimuthal mode corresponds to the hth harmonic res-
onance [i.e., ω ≈ (k + hkw)vz]”. There θ indicates an
azimuthal position as in Fig. 3. Note that the phase
φh = kz+ hθ−ωt pertains a circularly polarized wave
whose electric field is written in terms of unit vectors
�eρ and �eθ and not of �ex and �ey (�eρ, �eθ, �ex and �ey are
shown in Fig. 3). In fact one may write the electric
field of a (e.g. left) circularly polarized plane wave at
position�r and time t as Eo(�er+ i �eθ) exp[iφh], Eo being a
constant field strength. We argue that it is incorrect to
use relation θ ≈ kwz in the expression forφh as done in
[2]. On the one hand, the radiation diffraction size for
a single particle is of order

√
�Lw. On the other hand,

the electron rotation radius is given by rw = (K/γ)�w.
It follows that r2

w/�Lw � 1, that holds independently
of the value of K, because Nw � 1. Thus, the elec-
tron rotation radius is always much smaller than the
radiation diffraction size. Moreover, straightforward
geometrical considerations show that it makes sense
to talk about a transverse beam size σ⊥ only when
σ2
⊥ � r2

w. This is the case in practical situations of
interest. There is still room to compare the beam
size σ⊥ with the radiation diffraction size. In the case
σ⊥ �

√
�Lw we deal with a filament electron beam.

In the opposite case the filament beam approxima-
tion breaks down. We are interested in this last case,
where single-particle results cannot be used. We have
therefore established a hierarchy in the characteristic
scales of interest: σ2

⊥ � �Lw � r2
w. It follows that the

azimuthal coordinate of each electron, θ, is fixed dur-
ing the motion inside the undulator with the accuracy
of the resonance approximation, scaling as 1/Nw. In
contrast to this, the identification θ ≈ kwz is made in
[2]. This is a kinematical mistake. If θ ≈ kwz each
electron would be rotating around the origin of the
coordinate system, that is not the case. Thus, the
azimuthal resonance condition is a misconception fol-
lowing from this mistake. This misconception is sub-
sequently passed on to simulations in [2], resulting
in incorrect outcomes. Harmonic emission exists for a
single electron, and it also exists for an electron bunch.
However, qualitative properties are different with re-
spect to what has been predicted in [2]. In particular,
as we have seen before, on-axis power vanishes.

z

x

y

x

y

r

θ

P

xe
r

ye
r

θe
r

re
r

Figure 3: Cylindrical coordinate system and setup.

CONCLUSIONS

In this paper we discussed NHG in helical undu-
lators, with particular emphasis on second harmonic
generation. First we considered the NHG mechanism
in helical undulators in all generality. Then we spe-
cialized our study to the case of second harmonic gen-
eration. Finally, to exemplify our results, we treated a
simplified model where the beam modulation wave-
front is orthogonal to the z axis, has a Gaussian trans-
verse profile and is independent on the position in-
side the undulator. Our results show that on-axis har-
monic generation from helical wigglers vanishes. This
applies to any harmonic of interest with the exclusion
of the fundamental, and independently of the form of
the electron beam modulation (assuming that the elec-
tron beam as a whole propagates on-axis). Important
consequences follow regarding the two mainstream
development paths in FEL physics. First, as concerns
short wavelength (x-ray) SASE FEL devices, vanish-
ing on-axis harmonics make the option of a helical
undulator less attractive as regards the exploitation
of NHG radiation. Second, as concerns high average-
power FEL oscillators, vanishing on-axis harmonics
suggest that helical undulators carry relevant advan-
tages over planar undulators, as potential for mirror
damage is reduced. Previous studies reported non-
vanishing on-axis power, due to the nature of a partic-
ular azimuthal resonance condition. We showed that
this resonance condition is a misconception, arising
from a kinematical mistake. This misconception was
passed on to simulations, that confirmed the presence
of on-axis power out of NHG from helical wigglers.
Such result is incorrect.

For details on our work we refer the interested
reader to [1].
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