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Abstract

It is usually assumed that the space charge effects in rel-
ativistic beams scale with the energy of the beam as γ−2,
where γ is the relativistic factor. We show that for a beam
accelerated in the longitudinal direction there is an addi-
tional space charge effect in free space that scales as E/γ,
where E is the accelerating field. This field has the same
origin as the “electromagnetic mass of the electron” dis-
cussed in textbooks on electrodynamics. We then consider
the effect of this field on a beam generated in an RF gun
and calculate the energy spread produced by this field in
the beam.

INTRODUCTION

Modern light sources such as free electron lasers and
energy recovery linacs require high-peak current, small-
emittance beams. One of the important characteristics of
such a beam is its energy spread. It determines the limits
of a possible bunch compression, the stability against mi-
crobunching, and properties of the beam as a radiator of
photons. There are several mechanisms that contribute to
the energy spread in radio frequency electron guns with the
dominant one, for nanocoulomb bunches, being the space
charge effect.

Traditionally in accelerator physics the space charge ef-
fect is computed as a self field of a beam moving with con-
stant velocity along a straight line. The longitudinal field
in such a beam causes the energy exchange between the
particles; it typically scales with the beam energy as γ−2

[1, p. 128], where γ is the relativistic factor, and usually
becomes small for highly relativistic beams. In a broader
sense, the space charge effect might be understood as a self
field of the beam, even when it moves with acceleration.
With this understanding, acceleration adds to the beam self
field. One such contribution, that attracted a lot of atten-
tion lately, is due to the coherent radiation of the beam and
is called the coherent synchrotron radiation wake (or CSR
wake) [2]. The CSR wake is the radiation reaction force
that keeps balance between the electromagnetic energy that
is carried away by the radiation and the kinetic energy of
the beam particles. It occurs when the beam is being accel-
erated in the direction perpendicular to the beam velocity
in bending magnets or undulators.

Another type of radiation reaction force has been con-
sidered in recent papers [3, 4]—it is a self field that arises
inside the beam during a violent longitudinal acceleration.
Such a field can play a role in plasma acceleration experi-
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ments, where the pace of acceleration is much larger than
in a conventional RF cavities.

In this paper we point out to a new component of the
space charge field that arises during longitudinal acceler-
ation of the beam. We assume that the acceleration is not
strong enough to cause a noticeable radiation. What it does,
however, it changes the velocity of the beam. Because the
beam electromagnetic field depends on how fast it moves,
the electromagnetic energy of the beam field changes dur-
ing acceleration. Similar to the case of a converging beam,
one should expect an additional component of the self field
that keeps balance between the beam and the field energy.
We call this field the acceleration field. Being proportional
to the acceleration, on average, it is equivalent to a renor-
malization of the mass; it is discussed in textbooks on elec-
trodynamics in connection with a so called electromagnetic
“mass” of a point charge [5, 6]. In this paper we are in-
terested in the spatial distribution of the field and, more
specifically, the energy spread in the beam induced by the
acceleration field.

The model that we consider in this paper assumes that
the beam does not change its shape during the acceleration.
We neglect a component of self field that is associated with
the converging (or diverging) beams (see [7] and references
therein).

ENERGY OF ELECTROMAGNETIC
FIELD OF A MOVING GAUSSIAN BUNCH

Consider a Gaussian bunch of charged particles moving
with velocity v in the z direction with the particle distribu-
tion function given by

n(x, y, ζ) =
N

(2π)3/2σzσ2
⊥

exp
(
− r2

2σ2
⊥
− ζ2

2σ2
z

)
, (1)

where N is the number of particles in the bunch, r =√
x2 + y2, ζ = z − vt, σx = σy = σ⊥ is the rms bunch

size in the transverse direction, and σz is the rms bunch
length in the longitudinal direction. The electromagnetic
field of such a bunch can be calculated using the Lorentz
transformation from the beam frame, see, e.g., [8]. The
integrated electromagnetic energy over the whole space

W =
∫

E2 + H2

8π
dV , (2)

grows with γ, as shown in Fig. 1. Note that this energy
tends to infinity when γ → ∞. As a detailed analysis
shows, at γ À 1 the asymptotic expression for W is

W =
Q2

√
πσz

log γ , γ À 1 . (3)
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Figure 1: Integrated electromagnetic energy density in
units Q2/σ for a spherical Gaussian bunch (σ⊥ = σz = σ)
as a function of γ.

Imagine now that the beam is being accelerated from rest
to velocity v corresponding to some value of γ. The in-
creased electromagnetic energy is taken from the kinetic
energy of the beam via a longitudinal electric field Ez in-
duced by the acceleration. Such a field is known from the
theory of the radiation reaction force [6, p. 386], where it is
responsible for the electromagnetic field contribution to the
mass of a charged particle. This force is linear in acceler-
ation, and changes sign when the acceleration is reversed.
It is not related to the radiation; in addition to transferring
energy from the beam to the electromagnetic field during
acceleration (and transferring it in the opposite direction
during deceleration) it introduced an energy spread in the
beam. In the next section we derive an expression for Ez

using the retarded potentials.

SPACE CHARGE AND ACCELERATION
FIELDS

Consider a beam moving along the z axis with velocity
v(t) that varies with time and is the same for all particles of
the beam. If n(x, y, z) is the particle density at initial time,
then at time t the charge density ρ and the current density jz

are: ρ = en(x, y, z − z0(t)), jz = ev(t)n(x, y, z − z0(t)),
with v = dz0/dt, and e the elementary charge. The scalar
and vector potentials of the beam are given by the following
equations [5]

φ(r, t) =
∫

ρ(r′, t− τ)
|r − r′| d3r′ ,

A(r, t) =
1
c

∫
j(r′, t− τ)
|r − r′| d3r′ , (4)

where the retarded time t − τ is defined by cτ = |r −
r′| . We will assume that the acceleration a(t) = dv/dt
is small and expand the potentials in Taylor series keeping
only linear terms in acceleration. We have approximately

z0(t− τ) ≈ z0(t)− v(t)τ +
1
2
a(t)τ2

v(t− τ) ≈ v(t)− a(t)τ . (5)

This gives for the scalar potential

φ(r, t) = e

∫
d3r′

|r − r′|
× n

(
x′, y′, z′ − z0(t) + v(t)τ − 1

2
a(t)τ2

)
. (6)

We now expand the function n to obtain φ ≈ φsc+φ̃, where
φsc is the space charge potential that does not depend on
acceleration, and φ̃ is a part of the potential proportional to
the acceleration:

φsc(r, t) = e

∫
n (x′, y′, z′ − z0(t) + v(t)τ)

|r − r′| d3r′ ,

φ̃(r, t) = −e

2
a(t)

∫
τ2

|r − r′|d
3r′

× ∂zn (x′, y′, z′ − z0(t) + v(t)τ) , (7)

with ∂zn = ∂n(x, y, z)/∂z. Similarly, we expand the vec-
tor potential A which has the z component only,

Az(r, t) =
e

c

∫
(v(t)− a(t)τ)
|r − r′| d3r′

× n

(
x′, y′, z′ − z0(t) + v(t)τ − 1

2
a(t)τ2

)
, (8)

to obtain A ≈ Asc + Ã, with

Az,sc(r, t) =
e

c

∫
v(t)n (x′, y′, z′ − z0(t) + v(t)τ)

|r − r′| d3r′

Ãz,(r, t) = − e

2c3
a(t)v(t)

∫
|r − r′|d3r′

× ∂zn (x′, y′, z′ − z0(t) + v(t)τ)

− ea(t)
c2

∫
n (x′, y′, z′ − z0(t) + v(t)τ)d3r′ . (9)

One can formulate conditions of applicability of the ap-
proximations used above by requiring that the terms dis-
carded in the Taylor expansions are small compared to
those left. There are two such conditions

a ¿ c2

l
,

∣∣∣∣ ȧa
∣∣∣∣ ¿ c

l
, (10)

where l is the characteristic size of the bunch. These con-
ditions mean that the acceleration is not large and does not
change fast.

The electric field of the beam is a sum of the space
charge field and a component that vanishes in the limit
when a = 0, E ≈ Esc + Ẽ, where Esc = −∇φsc −
c−1∂Asc/∂t and Ẽ = −∇φ̃ − c−1∂Ã/∂t. The elec-
tric field Esc (and related to it the magnetic field B =
v×Esc/c) is traditionally associated in accelerator physics
with the the space charge effect. The total energy of this
field is plotted in Fig. 1.

In this paper, we are interested in the electric field Ẽ,
and more specifically in the longitudinal component Ẽz

Ẽz = −∂φ̃

∂z
− 1

c

∂Ãz

∂t
, (11)
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that changes the kinetic energy of the beam particles. Us-
ing Eqs. (7) and (8) for calculation of Ẽz we find that in
addition to terms proportional to a it also contains terms
that involve ȧ and a2. We discard the latter as being small
because of the conditions (10). This approximation gives
the following expression for Ẽz ,

Ẽz = − e

c2
a

∫
n (x′, y′, z′ + vτ)

|r − r′| d3r′ (12)

− e

2c2
aβ

∫
(β|r − r′| − (z − z′)) d3r′

× ∂zzn (x′, y′, z′ + vτ)

+
e

2c2
a

∫ (
z − z′

|r − r′| − 4β

)
∂zn (x′, y′, z′ + vτ) d3r′ .

In this equation we set t = z0 = 0 (which means that the
density distribution of the beam at the observation time is
now n(x, y, z)), and suppressed the argument t in a and v.
In what follows, for brevity, we call Ẽz the acceleration
field.

ACCELERATION FIELD FOR A
GAUSSIAN BUNCH

For a Gaussian bunch with the charge distribution func-
tion given by Eq. (1) the calculation of the acceleration field
can be reduced to a one dimensional integral. The expres-
sion for this field is derived in Ref. [9] and is given by the
following equations

Ẽz(x, y, z) =− eNa√
2πc2σz

G

(
r

σ⊥
,

z

σz

)
, (13)

with

G (R, Z) =
∫ ∞

0

dvF (v, Z) (14)

× exp
[
− R2A2

2 (A2 + vγ2)
− Z2

2(v + 1)

]
,

where

F (v, Z) =
γ2

2(v + 1)9/2 (A2 + γ2v)
× (15)[

v
(
5Z2 +

(
2(v − 2)(v + 1)Z2 + v(v + 3)2 − vZ4

)
γ2

)
+ v

(
4γ2 + v

(
Z4 − (v − 4)Z2 − v

)
+ 3

)
+ 2

]
.

Using the relation between the acceleration and the rate
of change of the gamma factor, a = (c/γ3β)dγ/dt, we can
write the energy change of a particle in the beam due to the
acceleration field as

∆E(r, z) =
∫

veẼzdt = − I0

IA
mc2

∫ γf

γi

dγ

γ3
G , (16)

where I0 = Nec/
√

2πσz is the peak current in the bunch,
IA = mc3/e is the Alfvén current, γi and γf are the initial
and final values of the gamma factor, and the function G is
given by Eq. (14).
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Figure 2: Energy loss induced by the acceleration field for
four different slices in the bunch (z/σz = 0, 1, 2, and 3;
this number is indicated near the curves) as a function of
electron radial position.

In the ultrarelativistic limit γ À 1, one can find from
Eqs. (14) and (15) that G ≈ 2γ2e−z2/2σ2

z . The longitudi-
nal acceleration field in this limit does not depend on ra-
dius. Taking into account that in the external field Eext the
acceleration of a relativistic particle is a = eEext/mγ3 we
arrive at the following expression for Ẽz

Ẽz =−
√

2
π

reN

σzγ
Eexte

−z2/2σ2
z , γ À 1 , (17)

with re = e2/mc2. We see that the acceleration field is di-
rected against the external field Eext and scales as Eext/γ.
This contrasts to the usual scaling ∝ γ−2 of the longitu-
dinal space charge forces. Note that due to the scaling
G ∝ γ2 the integral (16) diverges logarithmically when
γf → ∞. This is related to the fact that the electromag-
netic energy of the bunch logarithmically tends to infin-
ity when γ → ∞, as indicated by Eq. (3). In reality, the
beam is being accelerated inside a vacuum volume that has
a characteristic transverse size b. The electromagnetic en-
ergy of a relativistic beam propagating in a pipe of radius
b does not change with γ when γ & b/σz . To take into
account this shielding effect of the metallic pipe, for rough
estimates, we will assume that γf = b/σz . Note that typ-
ically b/σz À 1, and because our result has only a loga-
rithmic dependence on γ, it is rather insensitive to the exact
value of γf .

For a numerical example we consider now parameters of
the LCLS rf-gun beam. Because our model assumes Gaus-
sian distribution and the LCLS beam has a flat longitudinal
profile, we choose the model parameters in such a way that
σx and σz are equal to the corresponding rms values for
the LCLS beam. We have σz = 0.86 mm, σx = 0.6 mm,
and Q = 0.72 nC (corresponding to the peak current of
I0 = 100 A). We also choose γi = 1 and γf = 20, corre-
sponding to the beam pipe radius of about 1.2 cm. Using
Eq. (16) we calculated the energy loss of each particle in
the beam. Note that for the nominal LCLS rf gun acceler-
ating field of 120 MV/m the applicability conditions (10)
are reasonably well satisfied. The plot of the radial depen-
dence of the function ∆E(r, z) for several values of z is
shown in Fig. 2. The energy loss for the same beam aver-
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Figure 3: Energy loss induced by the acceleration field (av-
eraged over transverse dimensions) as a function of elec-
tron longitudinal position, curve 1. For comparison, we
also show the energy loss introduced by the space charge
effect, curve 2.
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Figure 4: RMS energy spread induced by the acceleration
field as a function of electron longitudinal position, curve
1. For comparison, we also show the energy spread intro-
duced by the space charge effect, curve 2.

aged over the transverse coordinate is shown in Fig. 3 as
a function of the position z. Finally, Fig. 4 shows the rms
energy spread in slices as a function of z. In Figs. 2 and
3 we also show the energy loss and the rms energy spread
introduced by the space charge forces (due to the longitudi-
nal component of the field Esc). The space charge effects
were calculated using the theory of Ref. [10].

DISCUSSION
As was mentioned in the introduction, the acceleration

field keeps balance between the electromagnetic energy of
the beam and the kinetic energy of the particles. Mathemat-
ically, this property is formulated as the equality between
the rate of change of the electromagnetic energy W and the
work of the field Ẽz on the moving particles

dW

dt
= −e

∫
Ẽzvnd3r . (18)

Although we do not prove this statement here (see [9]), we
demonstrate its validity with the numerical example from
the previous Section. We calculated the electromagnetic
energy difference for the beam at the final state with γf =
20 and the initial state with γi = 1, which gave us ∆W =

22.5 µJ. When we integrated the right side of Eq. (18) over
time from the initial to the final state, we found that the
work of the acceleration numerically is equal to ∆W , in
perfect agreement with the energy balance equation.

Computation of beam self-fields is a critical aspect in
numerical simulations of high-brightness electron beam
generation. Many simulation codes (ASTRA, IMPACT,
PARMELA) employ the quasi-static approximation and
compute only the space charge fields. There exist a few
codes that calculate the beam fields from the exact solutions
of Maxwell’s equations (i.e., the retarded potentials). A re-
view of different computational approaches can be found in
Ref. [11]. In this paper, starting with the retarded potentials
and separating explicitly the self-fields into space charge
and acceleration ones, we give an analytical expression for
the longitudinal component of the acceleration field. Using
a Gaussian bunch model and typical (LCLS) RF gun pa-
rameters, we calculate the energy spread introduced by the
acceleration field and show that it gives rise to a small cor-
rection of the energy spread introduced by the space charge
field. These results may be useful in guiding the simulation
studies of high-brightness beams.
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