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Abstract

We present a description of longitudinal wake
fields in XFELs that is of relevance in relation
with Enhanced Self-Amplified Spontaneous Emission
(ESASE) schemes. We consider wakes in XFELs, in
the limit when the electron beam has gone inside the
undulator for a distance longer than the overtaking
length (the length that electrons travel as a light sig-
nal from the tail of the bunch overtakes the head of
the bunch). We find that the magnitude of the result-
ing energy chirp constitutes a reason of concern for
the practical realization of ESASE schemes. A more
detailed report of our study is given in [1].

INTRODUCTION

This article presents a description of longitudinal
wake fields in XFELs. Our study is of importance in
connection with ESASE schemes, demanding for a de-
tailed study of longitudinal wake fields arising after
the dispersive section. For XFEL setups, the undula-
tor parameter K obeys K2 � 1. As a result, the average
longitudinal Lorentz factor γ̄z = γ/

√
1 + K2/2 is such

that γ̄2
z � γ2, γ being the Lorentz factor of the beam.

Based on γ̄2
z � γ2, we demonstrate that the presence

of the undulator strongly influences the space-charge
wake. In contrast to this, in literature, wake calcu-
lations for the LCLS case are given in free-space, as
if the presence of the undulator were negligible. In
this paper we pose particular attention to the LCLS
case, for which ESASE schemes have been first pro-
posed. We thus restrict our attention to a specific
region of parameters. First, the longitudinal size of
the beam is much larger than the FEL wavelength,
i.e. σz � � � �r. Second, we assume a long satura-
tion length compared with the overtaking length, i.e.
Ls � 2γ̄2

z�. Third, effects of metallic surroundings
can be neglected, i.e. a � γ̄z�. We present a general
theory based on these three assumptions. These are
satisfied for the LCLS case, together with an extra-
assumption on the transverse electron-beam size σ⊥:
σ2
⊥ � �λw, � being the reduced wavelength. Due to

this last condition, major simplifications arise in the
general theory. Radiation from the undulator is dras-
tically suppressed and calculations of impedance and
wake function can be performed considering a non-
radiating beam, and thus accounting for space-charge
interactions only. Space-charge impedance and wake
function is found to reproduce the free-space case.

Only, γ must be consistently substituted with γ̄z. We
apply our theory to the ESASE setup referring to the
LCLS facility. We calculate the energy chirp associ-
ated with wakes inside the undulator and between
dispersive section and undulator. Subsequently, the
magnitude of their effect is estimated by calculating
the linear energy chirp parameter. We find that the
gain of the FEL process is sensibly reduced, and that
longitudinal wake fields constitute a reason of concern
regarding the practical realization of ESASE schemes.

FIELD CALCULATION

Calculation of longitudinal wake field and
impedance from an FEL undulator first demand char-
acterization of the electric field generated at a given
position by the bunch. We perform an analysis in

terms of harmonics, i.e. �E = �̄E(�r, ω) exp[−iωt] + C.C.,
the symbol ”C.C.” indicating complex conjugation1.

The complex amplitude �̄E(�r, ω) can be considered as
the electric field in the space-frequency domain, ”the
field”. Transverse and longitudinal fields can be
found by solving paraxial Maxwell’s equation in the

space-frequency domain: D[�̃E(z,�r⊥, ω)] = �g(z,�r⊥, ω).

Here �̃E⊥ = �̄E⊥ exp [−iωz/c] is the electric field enve-
lope that does not vary much along z on the scale of
the reduced wavelength � = λ/(2π). The differential
operatorD is defined byD ≡ (∇⊥2+(2iω/c)·∂/∂z),∇⊥2

being the Laplacian operator over transverse cartesian
coordinates. The source-term �g(z,�r⊥) is specified by
the trajectory of the source electrons, and can be writ-
ten in terms of the Fourier transform of the transverse
current density, �̄j(z,�r⊥, ω), and of the charge density,

ρ̄(z,�r⊥, ω), as �g = −4π exp[−iωz/c](iω/c2�̄j− �∇ρ̄). Thus,
we recognize current and gradient terms in the field.

Here �̄j and ρ̄ are regarded as given data. They will be
treated as macroscopic quantities, and can be written
as ρ̄(�r⊥, z, ω) = ρo(�r⊥ − �r′o⊥(z)) f̄ (ω) exp[iωso(z)/vo] and
�j = �voρ. Here f̄ (ω) is the Fourier transform of the lon-
gitudinal bunch-profile, while ρo is related with the
transverse bunch-profile. �r′o⊥(z), so(z) and vo pertain a
reference electron with Lorentz factorγ that is injected
on axis with no deflection and is guided by the undu-
lator field only. In particular, r′ox(z) = rw cos(kwz) and

1For simplicity we will consider ω > 0. Expressions for the
field at negative values of ω can be obtained based on the property
�̄E(−ω) = �̄E

∗
(ω) starting from explicit expressions for �̄E at ω > 0.
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r′oy(z) = 0, where the transverse amplitude of oscilla-
tions is rw = K/(γkw). The correspondent velocity is
described by �vo⊥(z) = vox�ex + voy�ey. Finally, so(z) is the
curvilinear abscissa measured along the trajectory of
the reference particle. Solution of Maxwell’s equation
is performed with the help of a perturbation theory in
the small parameter λr/λ� 1. Calculations yield [1]:

�̃E⊥(z,�r⊥) = −
iω f̄ (ω)

c

∫
d�r′⊥ρo

(
�r′⊥

)
exp

[
iωz
2cγ̄2

z

]

×
⎧
⎪⎪⎨
⎪⎪⎩ + exp[+ikwz]

K�ex

iγ
K0

(√
2
| �r⊥ − �r′⊥ |√
��w

)

− exp[−ikwz]
K�ex

iγ
K0

(
−
√

2i
| �r⊥ − �r′⊥ |√
��w

)

+ exp[+ikwz]
icrw

ω

⎡
⎢⎢⎢⎢⎣ −

√
2K1

(√
2 |�r⊥−

�r′⊥|√
��w

)
�ex

√
��w | �r⊥ − �r′⊥ |

+
2(x − x′)(�r⊥ − �r′⊥)

��w | �r⊥ − �r′⊥ |2
K2

(√
2
| �r⊥ − �r′⊥ |√
��w

) ⎤
⎥⎥⎥⎥⎦

− exp[−ikwz]
icrw

ω

⎡
⎢⎢⎢⎢⎣ −

√
2iK1

(
−
√

2i |�r⊥−
�r′⊥|√
��w

)
�ex

√
��w | �r⊥ − �r′⊥ |

+
2(x − x′)(�r⊥ − �r′⊥)

��w | �r⊥ − �r′⊥ |2
K2

(
−
√

2i
| �r⊥ − �r′⊥ |√
��w

) ⎤
⎥⎥⎥⎥⎦

−
[

ic
ω

�r⊥ − �r′⊥
| �r⊥ − �r′⊥ |

]
2
γ̄z�

K1

(
| �r⊥ − �r′⊥ |
γ̄z�

) ⎫⎪⎪⎬
⎪⎪⎭ (1)

and

Ẽz(z,�r⊥) = −
iω f̄ (ω)

c

∫
d�r′⊥ρo

(
�r′⊥

)
exp

[
iωz
2cγ̄2

z

]

×
⎧
⎪⎪⎨
⎪⎪⎩ +

√
2

√
��w

exp[+ikwz]
[

cK
ωγ

x − x′

| �r⊥ − �r′⊥ |

]

× K1

(√
2
| �r⊥ − �r′⊥ |√
��w

)

+

√
2i

√
��w

exp[−ikwz]
[

cK
ωγ

x − x′

| �r⊥ − �r′⊥ |

]

× K1

(√
2i
| �r⊥ − �r′⊥ |√
��w

)

+
2
γ̄2

z
K0

(
| �r⊥ − �r′⊥ |
γ̄z�

) ⎫⎪⎪⎬
⎪⎪⎭ . (2)

Terms not including exp[±kwz] are entangled with
the electron beam. We identify them as space-charge
terms. The formation length of the space-charge field
is 2�γ̄2

z , while the correspondent diffraction size is γ̄z�.
Terms including exp[±ikwz] are indicative of radiation
fields. Phase velocity of terms including exp[+ikwz] is
slower than that of the beam harmonic. Phase veloc-
ity of terms including exp[−ikwz] is faster than that of
the beam harmonic. The formation length of radiation

field terms is �w, while the correspondent diffraction
size is

√
��w. The first and the second integral in the

transverse field are (radiative) current density terms.
The third and the fourth term are (radiative) gradient
terms, while the last term is a (space charge) gradi-
ent term. As regards the longitudinal field instead,
the third integral is a (space-charge) term originating
from a mixture of gradient and current sources. It is
possible to cross-check our expressions for the field

with the help of Gauss law �∇ · �̄E = 4πρ̄. In particular,

it can be seen that �̄E = �̄Erad + �̄Esc separately verifies:
�∇ · �̄Esc = 4πρ̄ and �∇ · �̄Erad = 0. This confirms that
radiation field is not entangled with sources, while
space-charge field is.

IMPEDANCE

The impedance is defined accounting for the trans-
verse size of the beam as Z(ω, z) = 1/| f̄ (ω)|2 ·∫ z

0 dz′
∫

A
d�r′⊥�̄j

∗
· �̄E. The integration volume is a cylin-

der of base A including the undulator up to position
z′ = z. Integration in z′ is performed from 0 to z,
because we are interested in impedance generated in-
side the undulator, that begins at z = 0. The wake
function can be obtained by Fourier transformation of
the impedance. Using Eq. (1) and Eq. (2) we obtain
the total impedance Z = Zr + Zsc. The real part ZR is
given by

ZR = −K2πωz
4γ2

∫
d�r′⊥

∫
d �r′′⊥ρ∗o(�r′⊥)ρo

(
�r′′⊥

)

×J0

⎛
⎜⎜⎜⎜⎜⎝

√
2
∣∣∣�r′⊥ − �r′′⊥

∣∣∣
√
��w

⎞
⎟⎟⎟⎟⎟⎠ . (3)

The imaginary part ZI amounts to

ZI = −K2ωz
2γ2

∫
d�r′⊥

∫
d �r′′⊥ρ∗o(�r′⊥)ρo

(
�r′′⊥

)

×
⎧
⎪⎪⎨
⎪⎪⎩
π

2
Y0

⎛
⎜⎜⎜⎜⎜⎝

√
2
∣∣∣�r′⊥ − �r′′⊥

∣∣∣
√
��w

⎞
⎟⎟⎟⎟⎟⎠ − K0

⎛
⎜⎜⎜⎜⎜⎝

√
2
∣∣∣�r′⊥ − �r′′⊥

∣∣∣
√
��w

⎞
⎟⎟⎟⎟⎟⎠

+
4 + 2K2

K2 K0

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣�r′⊥ − �r′′⊥
∣∣∣

γ̄z�

⎞
⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭ . (4)

ZR can be entirely traced back to the fast-wave part of
the transverse radiative field. ZI is composed of differ-
ent contributions instead. The term in Y0 follows from
the fast-wave transverse radiative field. The second
term (in K0) follows from the slow-wave transverse
radiative field. The last term (also in K0) can be traced
back to the longitudinal space-charge field.

Asymptotic case for σ2
⊥ � ��w

It is interesting to derive asymptotic limits of Eq.
(3) and Eq. (4) in the case for σ2

⊥ � ��w. Bessel
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functions in Eq. (3) and Eq. (4) can be expanded for
small argument values. In particular, using J0(x) � 1
for x � 1, the real part of the impedance becomes
ZR = −K2πz/(4c�γ2), independently of the choice
of ρo. Subsequently, we use K0(x) � −γE − ln(x/2)
and Y0 � 2/π[γE + ln(x/2)], γE � 0.577216 be-
ing the Euler Gamma constant in the imaginary
part of the impedance, Eq. (4). We obtain ZI =

−K2z/(c�γ2) ln(
√
�/�r) + 2z/(c�γ2) ln(

√
1 + K2/2) +

ZI free, where ZI free = 2zγE/(c�γ2) +

2ωz/γ2
∫

d�r′⊥
∫

d �r′′⊥ρ∗o(�r′⊥)ρo( �r′′⊥) ln[|�r′⊥ − �r′′⊥|/(2�γ)].
ZI free is the only model-dependent part of the
impedance. Assuming a Gaussian transverse pro-
file ρo(r⊥) = 1/(2πσ2

⊥c) exp[−r2
⊥/(2σ

2
⊥)], we obtain

ZI free = 2zγE/(c�γ2) + 2z/(c�γ2) ln[σ⊥/(γ�)). Thus,
ZI free, is logarithmically divergent on σ⊥. This is the
free-space impedance. The renormalized impedance,
i.e. the difference Z− i ZI free is independent of σ⊥ and
constitutes a result valid for any value of K. These
results are in agreement with limiting cases discussed
in literature.

Asymptotic case for σ2
⊥ � ��w

Transverse scales pertaining radiation field and
space-charge field are present in Eq. (3) and Eq.
(4). The first two terms in Y0 and K0 in Eq. (4),
as well as the entire real part of the impedance, are
linked to the presence of transverse current density
and to radiation field. The last term in Eq. (4)
is due to the presence of longitudinal space-charge
field, a combination of current and gradient terms.
The corresponding Bessel functions yield different
characteristic transverse scales. Bessel functions re-
lated with the radiation field yield

√
��w ∼

√
��rγ̄2

z .
Those related with the longitudinal space-charge field

yield �γ̄z ∼
√
��γ̄2

z . Since � � �r, it follows that
√
��w/2 � �γ̄z. By inspection of Eq. (3) and Eq. (4)

one can see that the value of
∣∣∣�r′⊥ − �r′′⊥

∣∣∣ is limited by
σ⊥, because of the presence of the exponential func-
tions under the integration sign. Therefore, assuming
constant total charge of the beam, when the electron
beam transverse size σ⊥ increases beyond

√
��w the

radiation contribution is suppressed with respect to
the space-charge one. Summing up, when σ2

⊥ � ��w,
we may neglect the real part of the impedance ZR and
approximate the total impedance with

Z = −i
2ωz
γ̄2

z

∫
d�r′

∫
d �r′′ρ∗o(�r′)ρo

(
�r′′⊥

)
K0

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣�r′ − �r′′
∣∣∣

�γ̄z

⎞
⎟⎟⎟⎟⎟⎠ . (5)

This means that, in the limit σ2
⊥ � ��w, the only field

to be accounted for when calculating impedance (and
wake), is the effective longitudinal space-charge field.

Figure 1: Plot of the universal function HA.

STEADY STATE WAKE FOR σ2
⊥ � ��W

Our derivations drastically simplify for σ2
⊥ � ��w.

We consider transverse and longitudinal gaussian
profiles. When σ2

⊥ � ��w, an expression for the wake
can be found by Fourier-transforming the impedance
given in Eq. (5). Eq. (5) is mathematically identical to
the free-space expression where γ is substituted by γ̄z.
We find that the antisymmetric part of the wake GA is
given by GA(Δξ) = γ̄zηẑ/σ⊥ ·HA(Δξ), where HA(Δξ) =
−Δξ/(2

√
π) {2

√
π/|Δξ| − π exp[(Δξ)2/4]erfc[|Δξ|/2]}.

Here we defined Δξ = γ̄z(Δs)/σ⊥, η = γ̄zσz/σ⊥ and
ẑ = z/(2γ̄2

zσz). A plot of the universal function HA as a
function of Δξ is given in Fig. 1.

The energy change of a single particle at position
s within the bunch due to the reactive part of the
wake (averaged over transverse coordinates) is given
by ΔEA(s) = (−e)

∫ ∞
−∞GA(Δs) f (s−Δs)d(Δs). An explicit

expression for ΔEA/Eo, with Eo = γmec2, as a function
of ξ = γ̄zs/σ⊥ is:

ΔEA

Eo

( s
σz

; η
)

=
Imaxẑ
γIA

F
( s
σz

; η
)

(6)

and

F
( s
σz

; η
)

=

∫ ∞

−∞
d(Δξ)ηHA

(
η

s
σz
− Δξ

)
exp

[
− (Δξ)2

2η2

]
. (7)

A plot of F is given as a function of s/σz in Fig. 2 for
different values of η.

APPLICATION TO ESASE SCHEMES

We now calculate the impact of longitudinal wake
fields on ESASE schemes. We propose an analysis
on a set of parameters referring to LCLS. Similar
calculations may be performed on other parameter
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Figure 2: Plot of F for different values of η.

sets like those for the European XFEL. We consider
a beam with normalized emittance after the disper-
sive section εn � 1.2 mm mrad. We take the average
betatron function in the focusing lattice β f = 18 m,
and γ = 2.8 · 104. This gives a transverse beam size
σ⊥ = (εnβ f /γ)1/2 � 30 μm. The longitudinal size of the
bunch is σz = 50 nm. The maximal current is about the
Alfven current IA � 17 kA; in fact, Ipeak � 18kA. Fi-
nally, the undulator has a period λw = 0.03 m, K = 3.7,
and the vacuum chamber dimension is a = 2.5 mm.
We consider a wavelength � � σz = 50 nm. We
can neglect the vacuum chamber influence, because
γ̄z� = 500 μm, as γ̄z � 104, and γ̄z� � a = 2.5
mm. The overtaking length is 2�γ̄2

z � 10 m. The
saturation length is about Ls = 50 m. Thus ẑ = 5,
and we can use our asymptotic expression. More-
over η = γ̄zσz/σ⊥ � 16.7. From fig. 2 (or from direct
calculations) one can see that the maximal value as-
sumed by F(s/σz, η) for η = 16.7 is about Fmax � 6. It
follows that the energy-chirp peak-to-peak is given by
ΔEA,peak = 2mec2(Imax/IA) · ẑFmax � 30 MeV. In contrast
to this, estimations in literature indicate ”a swing in
energy of 2.4 MeV”. The reason for this large discrep-
ancy is due to the fact that, in literature, the Lorentz
factor γ is incorrectly used in place of γ̄z. Energy
chirp is also accumulated in the free-space between
the dispersive section and the undulator, worsening
the situation even more. In the LCLS case the disper-
sive section is a dogleg located about 200 m from the
undulator. The overtaking length is now 2�γ2 � 80
m, so that ẑ = 2.5. Using the same procedure as for
the wake inside the undulator (but considering γ in-
stead of γ̄z), we obtain an extra energy chirp of about
ΔEA,peak � 20 MeV. The sum of contributions from the
straight section after the dogleg and from the undula-
tor amounts to about 50 MeV. In order to estimate the
magnitude of the effect we can use the linear energy
chirp parameter α̂ = −(γωρ2

1D)−1 · dγ/dt, where ρ1D is
the one-dimensional ρ-parameter in FEL theory. For

ESASE schemes at LCLS Ipeak = 18 kA, and we have
ρ1D � 10−3. Using an estimated peak-to-peak chirp of
50 MeV we obtain α̂ � 1. Thus, the saturation length
is significantly modified. This is a reason of concern,
because ESASE schemes are based on the assumption
that the nominal saturation length of about 80 m is
shortened to about 50 m, that is only 37.5% less.

CONCLUSIONS

We presented a theory of wake fields in an XFEL
system. Specific constraints on parameters (fulfilled
in XFEL setups) were considered. We derived expres-
sions for the steady state impedance, that is composed
of a radiative and a space-charge part. Radiation field
and space-charge field are characterized by different
formation lengths: the undulator period �w and the
overtaking length 2�γ̄2

z respectively. As a result, the
steady state radiative part of the impedance can be
applied for any undulator system (with Nw � 1).
The steady state space-charge part of the impedance
can be used only assuming that the saturation length
is long with respect to the overtaking length, which
limits its practical region of applicability. After hav-
ing dealt with a generic expression for the steady-
state impedance, we specialized our theory to the case
σ2
⊥ � ��w. Major simplifications arise: space-charge

contributions to impedance and wake dominate with
respect to radiative contributions. We showed that
the (antisymmetric) wake can be given in terms of an
asymptotic expression for the wake generated by a
beam in uniform motion along the longitudinal axis
provided that γ is consistently substituted with γ̄z. Fi-
nal expressions are presented in the case of a planar
undulator. However, there are no specific effects re-
lated with such choice, and our work may be straight-
forwardly extended to the case of a helical undulator.
In the limit σ2

⊥ � ��w radiation is suppressed, so that
the beam can be considered as non-radiating, and only
space-charge impedance is present. Such impedance
amounts to the free-space impedance, where γ is con-
sistently substituted with γ̄z. Eq. (5) gives the correct
impedance at position z inside the undulator, as an
asymptotic limit for σ2

⊥ � ��w of our general theory.
We used our theory to estimate the effect on ESASE
schemes, and we found reason for concern. Our re-
sults are in contrast with literature, where the Lorentz
factor γ is incorrectly used in place of γ̄z in the calcu-
lation of the impedance.

For details on our work we refer the interested
reader to [1].
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