
SELF-FORCE-DERIVED MASS OF AN ELECTRON BUNCH

E. Saldin, DESY, Hamburg, Germany

Abstract

We study an electron bunch together with its self-fields
from the viewpoint of basic dynamical quantities. This
leads to a methodological discussion about the definition of
energy and momentum for fully electromagnetic systems
and about the relation between covariance of the energy-
momentum pair and stability. We show here that, in the
case of unstable systems, there is no mean to define, in a
physically meaningful way, a total energy-momentumfour-
vector: covariance of the energy-momentum pair follows
from the stability of the system and viceversa, as originally
pointed out by Henry Poincaré. Another version of this pa-
per by G. Geloni and the author can be found in [1].

INTRODUCTION

Nearly one hundred years have passed since Abraham
and Lorentz calculated their famous expressions for the en-
ergy and momentum of a purely electromagnetic, spheri-
cally symmetrical distribution of charges [2], [3]. This dis-
tribution constitutes an attempt to build a classical model
of the electron: according to Lorentz’s initial idea, mass,
energy and momentum of the electron could, indeed, be of
completely elecromagnetic nature.

Nevertheless, the energy (divided by the speed of light
in vacuum, as we will understand through this paper) and
momentum of such an electromagnetic electron do not con-
stitute a four-vector. In fact (as Abraham [4] pointed out
already in 1904 probably, at that time, without a clear un-
derstanding of what a four-vector is), in a frame moving
with velocity �v with respect to the system rest frame, we
have

Ee = γU ′(1 + 1/3β2) (1)

and

�Pe = 4/3γ�vU ′/c2, (2)

where the index e indicates the electromagnetic nature of
the energy Ee and momentum �Pe, γ is the usual Lorentz
factor, β is the velocity v/c (normalized to the speed of
light in vacuum c), and U ′ indicates the electromagnetic
energy in the electron rest frame [5],

U ′ = ε0/2
∫

�E′2dV ′, (3)

where ε0 is the free space permittivity. U ′ is purely an elec-
trostatic quantity (in this paper the prime will always indi-
cate quantities calculated in the rest frame; therefore �E′
and dV ′ are, respectively, the electric field and the volume
element in the rest frame of the system).

It is worth to mention here that the factor 4/3 in Eq. (2)
and the term proportional to 1/3β 2 in Eq. (1) depend on
the choice of spherical symmetry made on the charge dis-
tribution: had we chosen, for instance, an infinitely long
line distribution in the direction of �v, we would have found

Ee2 = γU ′(1 + β2) (4)

and

�Pe2 = 2γ�vU ′/c2, (5)

while, in the case of a line charge oriented perpendicularly
to the direction of �v,

Ee3 = γU ′ (6)

and

�Pe3 = γ�vU ′/c2, (7)

which only incidentally, due to the particular choice of the
distribution, behaves as a four-vector.

Henry Poincaré solved the problem of the lack of co-
variance shown in Eq. (1) and Eq. (2) by introduc-
ing, in the electron model, energies and momenta of non-
electromagnetic nature [6]. These are actually due to non-
electomagnetic interactions which keep the electron to-
gether. By doing so he strongly related the covariance of
energy and momentum with the stability of the system:
the electomagnetic energy-momentum pair alone is not a
four-vector, but the total energy-momenum pair, account-
ing for the non-electromagnetic interaction, is a regular
four-quantity.

In 1922, Enrico Fermi developed an original, early rela-
tivistic approach to the 4/3 problem [7]; about forty years
later a redefinition of the energy-momentum pair related to
Fermi’s work was proposed by Rohrlich [8], which leaves
untouched the total energy-momentum vector, but splits
it into electromagnetic and non-electromagnetic contribu-
tion in such a way that covariance is granted for both the
electromagnetic and the non-electromagnetic part of the
energy-momentum pair.

It is possible to show [9], [10] that the treatments by
Poincaré and Rohrlich are not in contradiction.

Nevertheless, the approach by Rohrlich [8] was some-
times taken (see e.g. [11]) as the proof that stability and
covariance are unrelated matters since, upon redefinition,
the electromagnetic part alone is a four-vector.

We will show here, that such a conclusion is incorrect.
The stability of the system is related to the covariance of

Proceedings of FEL 2007, Novosibirsk, Russia MOBAU01

FEL Prize and New Lasing

1



the total energy-momentum vector, according to the orig-
inal work by Poincaré: the redefinition procedure men-
tioned above is indeed acceptable only in the case one is
interested in the total energy-momentum vector of a sta-
ble system (i.e. a system whose constituents are and stay
at rest in a particularly chosen frame), and not in the sep-
arate electromagnetic and non-electromagnetic part. Only
in that case the arbitrariness included in the recombination
of these two contributions does not affect the equation of
motion for the system (which deals, in fact, with the total
energy-momentum vector).

Some time ago, we were addressing the problem of de-
scribing the transverse self-fields originating within an ul-
trarelativistic electron bunch moving in a fixed trajectory
[12].

This is a particularly relevant problem in modern particle
accelerator physics, in view of the need for very high-peak
current, low emittance beams to be used, for example, in
self-amplified spontaneous emission (SASE)-free-electron
lasers operating in the x-ray regime (see for example [13],
[14]): in fact, the good quality of the beam may be spoiled
by self-interaction occurring within the bunch.

Besides practical relevance (which stresses how, after
one hundred years, pure academical problems become rel-
evant also to applied physics), an electron bunch is also a
very good example of an unstable system subject to purely
electromagnetic interactions. For such a system, the total
energy and the total momentum in any frame, are just of
electrodynamical nature. We will show that (according to
our previous statement about the relation between stability
and covariance) there is no way, in this case, to define the
total energy-momentum pair in a covariant way. In fact, in
contrast to what happens for stable systems, there is no way
to describe the evolution of an unstable system without the
knowledge of the (electromagnetic) field theory governing
the (self-)interactions between its constituents.

A PARADOX AND ITS SOLUTION

Let us consider a short electron bunch moving, in a given
laboratory frame, in a circular orbit. We can simplify the
description of this system accounting only for two electrons
which will represent the head and the tail of our bunch.

Imagine that the two particles are moving, initially with
the same Lorentz factor γ � 1, in a circular orbit of radius
R, and separated by a (curvilinear) distance Δs � R/γ 3.

In this situation the two electrons are near enough to be
considered travelling with the same velocity vector: in-
deed it can be shown [15], that they radiate as a single
particle of charge 2e (e being the electron charge) up to
frequencies much above the synchrotron radiation critical
frequency (note that, from a quantitative viewpoint, the
expression ”much above” is trivially connected to ”how
much” Δs � R/γ3). The requirements specified before
consist, from a geometrical viewpoint, in assuming that, at
the beginning of the evolution, the two particles world-lines
are very close: actually, considering our resolution in space

equal to R/γ3, they initially coincide.
This assumption justifies the presence of an inertial

frame in which both particles are, with good approxima-
tion, at rest during the initial part of their evolution. We
will refer to it simply as the rest frame. A quantitative defi-
nition of the initial part of the evolution may be given when
a choice is made about close to zero are the velocities of
the particles in the rest frame. Note that the existence of
the rest frame is central for our study because, referring to
it, one can easily analyze the energy and momentum of the
system constituted by the two particles together with their
electromagnetic fields.

By means of a Lorentz transformation, then, we can re-
cover the same quantities in the laboratory frame.

Starting with the study in the rest frame we will refer,
separately, to mechanical and electromagnetic quantities.

Obviously, in the rest frame, the mechanical momentum
of the system, �P ′

ne, is zero, and the mechanical energy,
E′

ne, is just equal to 2mc2, where m is the electron rest
mass.

The study of the electromagnetic contributions to energy
and momentum is also trivial. Since the electrons are at rest
they produce electric field only. Therefore the Poynting
vector vanishes and �P ′

e = 0. On the other hand, Ee is
given, simply, by the work U ′ done against the field to bring
the two particles together (quasistatically) from a situation
in which they are separated by an infinite distance.

By doing so, of course, we are neglecting, in both �P ′
e

and E ′
e, the contributions from the acceleration (self-)fields

generated by the system.
This approximation is justified by the fact that we are

discussing the asymptotic behavior for the two particles
separated by a very small distance: then, as it will be clear
from Eq. (16) and Eq. (25), we may assume that the accel-
eration field contribution are unimportant, when compared
with the Coulomb one. In fact acceleration effects saturate
in the asymptotic limit of small distance between the two
particles [15], while Coulomb ones are singular; once again
it must be clear that we are discussing the asymptotic case
for small distance between the two particles. Therefore we
have:

E′
e = U ′ = e2/(4πε0γΔs) (8)

and

�P ′
e = 0. (9)

Summing up the electromagnetic and mechanical contri-
butions one gets the total energy and momentum for the
system:

E′
tot = E′

ne + E′
e = 2mc2 + U ′ (10)

and

�P ′
tot = �P ′

ne + �P ′
e = 0. (11)
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As already said one may, now, use a Lorentz transforma-
tion in order to calculate these quantities in the laboratory
frame. Again, since we are interested at the beginning of
the evolution, it follows from our assumptions that the two
particles evolve with the same four-velocity vector. There-
fore a direction of motion (which we will designate with z)
is well defined for the system in the laboratory frame and
the Lorentz transformation from the rest frame is, indeed,
a simple boost in the −z direction (note that a good defini-
tion of the z direction is equivalent to a good definition of
the rest frame). We will represent this boost with a matrix
with components Λμ

ν with μ, ν = 0...3 (where the third
component corresponds to the z direction):

Λμ
ν =

⎛⎜⎜⎝
γ 0 0 βγ
0 1 0 0
0 0 1 0

βγ 0 0 γ

⎞⎟⎟⎠ . (12)

The use one makes of Λμ
ν is a critical point in our deriva-

tion. If one (erroneously) assumes that energy and mo-
mentum constitute a four-vector, then he gets, straightfor-
wardly:

(Etot/c, �Ptot)μ = Λμ
ν(E′

tot/c, �P ′
tot)ν (13)

and, therefore,

Etot/c = γ
(
2mc2 + U ′) , (14)

and

Ptot = γ
(
2m + U ′/c2

)
βc , (15)

where Ptot is a scalar quantity, since we understand that
�Ptot is oriented along the z direction.

We can now project the equation of motion, �Fsyst =
d�Ptot/dt, onto the transverse direction (perpendicular to
z and lying on the orbital plane) thus getting, within our
approximations:

F⊥syst = 2eBβc +
e2

4πε0RΔs
(16)

As already mentioned in the Introduction (with in mind the
applications in the physics of particle accelerators and the
one of SASE-FELs, see [13], [14]) we addressed the de-
scription of the transverse self-fields originating within an
electron bunch moving in a circle in [12]. In that paper an
approach has been proposed which involves purely elec-
trodynamical considerations, based on the retarded Green
function solution of Maxwell equations.

In particular, in part of [12] we treated the case of two
particles separated by a distance Δs (non necessarily much
smaller than R/γ3), moving rigidly in a circle (see Fig. 1)
of radius R. Our results disagree with Eq. (16).

Let us briefly justify the latter statement. The total trans-
verse force (orthogonal to its velocity and lying on the or-
bital plane) felt by the head electron and due to the tail
electron source turned out to be (see, again [12]):

��

�

�

�

�

Δ�

φ

β
��

β
�

�
��
��

Figure 1: Geometry for the two-particle system in the
steady state situation, with the test particle ahead of the
source. Here T is the present position of the test particle, S
is the present position of the source, while S’ indicates the
retarded position of the source.

F⊥ � e2γ3

4πε0R2
Φ(φ̂) , (17)

where Φ is defined by

Φ(φ̂) =
2 + φ̂4/8

φ̂(1 + φ̂2/4)3
, (18)

Here φ̂ is the retarded angle φ (which expresses the angu-
lar distance between the retarded position of the source the
present position of the test electron, see Fig. 1, normalized
to the synchrotron radiation formation angle at the critical
frequency, 1/γ, i.e. φ̂ = γφ. Eq. (18) is completely inde-
pendent of the parameters of the system.

It is straightforward to study the asymptotic behaviors
of Φ. In order to do so, just remember that the retardation
condition linking Δs and φ is given by (see [12], [15]):

Δs = Rφ− 2βR sin
φ

2
, (19)

or by its approximated form

Δs = (1 − β)Rφ +
Rφ3

24
. (20)

It is now evident that Φ(Δŝ) → 1/(3Δŝ) when φ̂� 1 and
Φ(Δŝ) → 1/(Δŝ) when φ̂ � 1, having introduced the
normalized quantity Δŝ = (γ3/R)Δs. This normalization
choice is, again, linked with the fact that the critical syn-
chrotron radiation wavelength, R/γ 3, is also the minimal
characteristic distance of our system: as we said before,
two particles nearer than such a distance can be considered
as a single one radiating, up to the critical frequency, with
charge 2e (see [12], [15]).

The asymptotic behavior above suggests to study the
function Φ(Δŝ)Δŝ. We plotted such a function in Fig. 2
(and the contribution from the acceleration field alone) for
values of Δŝ running from 0 to 5.

As it is seen from the figure, the contribution from the
velocity field is not important in the asymptotic limit for
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Figure 2: Plot of Φ(Δŝ)Δŝ (solid line) and compari-
son with the asymptotic values, 1 and 1/3. The dashed
line shows the contribution from the acceleration field,
ΦR(Δŝ)Δŝ, alone.
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Figure 3: Geometry for the two-particle system in the
steady state situation, with the source particle ahead of the
test one. Here T is the present position of the test particle,
S is the present position of the source, while S’ indicates
the retarded position of the source.

particles very nearby (our case) or very far away. When, in
particular, Δs� Rγ3 we can approximate Eq. (17) by

F⊥ � e2

4πε0RΔs
. (21)

On the other hand, as regards the force felt by the tail
particle (see Fig. 3), it is easily seen that (see [12], [15]) the
test electron, which now is the tail particle, ”runs against”
the electromagnetic signal emitted by the source (while in
the previous case it just ”runs away” from it). Therefore the
relative velocity between the signal and the test electron is
equal to (1+β)c (instead of (1−β)c in the other situation).
Hence the retardation condition reads

Δs = Rφ + 2βR sin
φ

2
, (22)

or, solved for φ in its approximated form,

φ � Δs

R(1 + β)
. (23)

In this situation, �βS is almost parallel (and equal) to �βT

and antiparallel to �̂n (which is the unit vector oriented as
the line connecting the retarded source to the present test
particle): it turns out that the only important contribution
to the transverse force results from the acceleration field
and reads:

F⊥ � e2

4πε0RΔs
. (24)

In the case under study, since Δs � R/γ 3, the total self-
force acting on the system is given by the sum of Eq. (21)
and Eq. (24):

F⊥ � 2
e2

4πε0RΔs
, (25)

which is in disagreement of a factor 2 with respect to the
self-force term in Eq. (16). In other words, had we erro-
neously assumed covariance, we would have encountered
a paradox. Again, note that we are treating the asymp-
totic limit of a small distance between the two electrons:
in this limit we can neglect the contribution from the accel-
eration field in the equation of motion Eq. (16). In fact this
contribution saturates for small distance between the two
particles (see [15]), while the term missing by comparison
between Eq. (16) and Eq. (25) is singular (and, therefore,
dominating) in the limit when Δs goes to zero.

This situation should not be too much surprising for the
reader familiar with the works [2]... [4] which led to Eq.
(1) and (2): the derivation of Eq. (16) is, in fact, performed
under the explicit assumption that energy and momentum
constitute a four-vector.

As we will immediately see, in the case of unstable sys-
tems (like the one we deal with), the use of correct transfor-
mation laws for the electromagnetic stress tensor solves the
problem but spoils the covariance of the energy-momentum
pair.

The energy and momentum of an electromagnetic sys-
tem in the laboratory frame is given by

E =
∫

T ′μνΛ0
μΛ0

ν

dV ′

γ
(26)

P i =
1
c

∫
T ′μνΛi

μΛ0
ν

dV ′

γ
, (27)

where T μν are the components (in the rest frame) of the
electromagnetic stress tensor of the system, which contains
all the information about the (electromagnetic) field the-
ory governing the interactions between the particles. The
process of lowering and raising indexes is governed in the
usual way by the metric tensor. Here the latin index i runs
from 1 to 3 and, as already said, the quantities with prime
refer to the rest frame. In our case we will consider the only
important component, i.e. the third (along z).

Note that the integrals in Eq. (26) and Eq. (27) include
both a single-particle term and an interaction term (com-
pare also [10]). Here we are interested in the interaction
term alone: in fact we will treat the (trivial) mechanical
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contributions to the energy-momentum pair separately and,
once again, we will neglect the acceleration-field contribu-
tions. Therefore, in the following, we will understand that
T ′ refers to the interaction term alone.

Then, since the mechanical energy-momentum pair of a
single particle is a 4-vector, one gets:

(Ene/c, Pne)μ = Λμ
ν(E′

ne/c, P ′
ne)

ν , (28)

hence

Ene = 2γmc2 (29)

and

Pne = 2βγmc. (30)

while

Ee = β2γ

∫
T ′33dV ′ + γU ′, (31)

Pe = γβU ′/c + γβ/c

∫
T ′33dV ′, (32)

We should note, here (but this is a valid methodological
remark also as regards the previous, incorrect approach),
that the particles are subject to a long-range interaction (the
electromagnetic interaction) and, therefore, a covariant def-
inition of the total energy and momentum is not straightfor-
ward even when one is considering the two particles alone,
without including (as we did, instead) the electromagnetic
fields in the system. Therefore, strictly speaking, one may
object that Eq. (28) does not make any sense at all.

Indeed, if the interaction occurred at a single point in
space-time (short-range scattering case), the particle veloc-
ities would have been constant, in the view of any inertial
observer, before and after the scattering took place. Then
if two observers related by a Lorentz boost compared their
judgments about the particles velocities, they would have
found that these are linked by a Lorentz transformation,
the same which transforms from one observer to the other.
Nevertheless, this is a particular case. We must remember
that, in general, according to the Theory of Relativity, the
concept of simultaneity depends on the observer. There-
fore, when (as in the situation under study) one deals with
a long-range interaction, the velocities of the particles, in
the judgment of the two observers above, are not related
by a Lorentz transformation anymore (see [16]): the objec-
tion about the correct definition of the mechanical energy-
momentum vector follows directly from this observation.
A good definition of the energy-momentum vector of the
two-particle system alone (without their fields!) can, in
fact, be recovered using more subtle geometrical methods
only, like a regular correlated representation of the world
lines (see [16]).

However this objection does not concern us, here, since,
as already implicit in the definition of the z direction, we
discuss about that region of space-time in which the two

particles world lines are very close and are roughly charac-
terized by the same Lorentz factor, that is, once again, at
the beginning of the evolution.

Then we can use Eq. (28)... Eq. (32) to get, by summa-
tion, the total energy and momentum of the system in the
laboratory frame and in the direction of motion (see also
[5] and [17]):

Etot = γ

(
2mc2 + U ′ + β2

∫
T ′33 dV ′

)
, (33)

and

Ptot = γ

(
2m + U ′/c2 +

1
c2

∫
T ′33 dV ′

)
βc . (34)

Note that Eq. (33) and Eq. (34) can be used to obtain Eq.
(1) and Eq. (2), as well as Eq. (4)... Eq. (7): different
distributions of charge give different expressions for the
electromagnetic stress tensor and for the electromagnetic
energy.

In our case of two electrons we already know the explicit
expression for U ′. In fact we remind that, as has already
been said, the electromagnetic interaction energy is simply
given by the work done against the field to bring the two
particles together, quasistatically, from a situation in which
they are separated by an infinite distance:

U ′ � e2

4πε0γΔs
. (35)

On the other hand it is easy to calculate T ′33 (in the rest
frame, since we need to integrate over V ′). To this pur-
pose we remind that, in the rest frame (and at short distance
γΔs � R/γ2, so that the acceleration field contributions
are unimportant), the space-space components of the total
(comprehensive of both single particle and interaction part)
symmetric energy-momentum tensor read (see [5]):

T ′ij
tot = −ε0(E′

iE
′
j − δijE

′2/2) , (36)

where, here, i, j = 1.. 3. The discussion above shows that,
for us, the only interesting component is T ′

33. It can be
proven that the interaction part alone is just∫

T ′33 dV ′ = U ′ . (37)

Note that Eq. (37) describes also the case of a charged line
distribution oriented in the direction of motion (in the case
of a charged line, of course, the single-particle term is not
present at all).

The equations for the energy and momentum of the sys-
tem in the laboratory frame now read:

Etot = γ
[
2mc2 + U ′(1 + β2)

]
(38)

and

Ptot = γ
(
2m + 2U ′/c2

)
βc , (39)
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whose electromagnetic parts are the same of Eq. (4) and
Eq. (5).

From the transverse component of the equation of mo-
tion for the system one gets

F⊥syst � 2eBβc + 2
e2

4πε0RΔs
(40)

Eq. (40) is now in perfect agreement with our result in
Eq. (25).

Both the terms on the right hand side of Eq. (40) are cen-
tripetal as well as in Eq. (16) (although, of course, Eq. (16)
and Eq. (40) are in disagreement as concerns the magni-
tude of the self-interaction term); the first describes the mo-
tion of the system under a magnetic field, while the second
is linked with the presence, in the system, of electromag-
netic fields: an extra centripetal (external) force is needed,
if one wants to keep the system moving in a circle of radius
R, compensating for the centrifugal self-field contributions
calculated in [12].

DISCUSSION

In order to reach the agreement between Eq. (40) and
Eq. (25), one has to give up the covariance of the energy-
momentum pair of our system, as it is seen directly from
Eq. (38) and Eq. (39).

We can sum up the discussion in the previous Section by
saying that the assumption of covariance for the transfor-
mation of the energy-momentum pair of an unstable sys-
tem leads to a paradox. Such a paradox can be solved in-
troducing the correct transformation laws for the energy-
momentum tensor. In this way, it is seen that the energy-
momentum pair for an unstable system (particles and elec-
tromagnetic field) is not a four-vector. We already men-
tioned in the Introduction that the non-covariant character
of energy and momentum is also present when one dis-
cusses some classical problems which involve the relativis-
tic dynamics of a charged particles stable system. Never-
theless, in these cases, covariance can be always restored
by introducing non-electromagnetic stresses which keep
the system together or, equivalently, by redefinition (see
[8]) of the energy-momentum pair. In particular we can re-
fer to the 4/3 problem in the classical electron model (as
done above in the Introduction) but also to other problems
like, for example, the explanation of the Trouton-Noble
paradox, which has been treated extensively in literature
(see [9], [18].. [21]) all over the last century.

As we already said in the Introduction, there is one major
difference with respect to our case, though: our system, in
contrast with the latter ones, is, by nature, unstable; there is
no reference frame such that its components are and stay at
rest. This fact leads to a major difference in the treatment
of the total energy and momentum.

In the case of a stable system, the total energy and
momentum of the system (including non-electromagnetic
binding forces) constitute a four-vector, a well-defined ge-
ometrical entity.

On the contrary, in the case of an unstable system, this
pair of quantities has no geometrical meaning, although it
is possible to give, of course, separate definitions of total
energy and momentum in the judgment of any observer.

In the situation discussed in the previous Section this is
a direct consequence of the fact that we deal with a fully
electrodynamical system and there is no way to introduce,
in a straightforward way, an analogue of Poincaré stresses.
As a result we must conclude that stability of the system
and covariance of the energy-momentum pair are bound to-
gether.

Let us discuss the latter statements in detail, starting with
a review of well-known arguments for stable systems.

Stable systems are characterized by a zero (total self-
) four-force density. When the four-force density can be
derived from an energy-momentum tensor T μν , the latter
property is equivalent to:

T μν
;μ = 0 , (41)

which is the requirement for a zero-divergency energy-
momentum tensor.

However, Eq. (41) refers to the total energy-momentum
tensor, while the electromagnetic part of it is not diver-
genceless at all (its divergence is, simply, the Lorentz four-
force density).

On the other hand, since stability is characterized by a
zero total four-force density, non-electromagnetic stresses
must be present (Poincaré stresses), which balance the
Lorentz four-force density, thus insuring stability for the
system. Poincaré stresses also insure covariance for the
energy-momentum pair which is, therefore, a well-defined
four-vector: to prove this, one can remember the definition
of the total energy-momentum pair (see [5], [9]):

Pμ =
1
c

∫
σ

T μνdσν (42)

where the integration is carried out over any hypersurface
at t = constant (actually σ may be, more generally, any
spacelike surface, see [9]) for any inertial observer.

It can be easily proved (see [9]) that Eq. (42) is indepen-
dent from the choice of the integration hypesurface. Such
a proof is based on Eq. (41).

The choice of different inertial observers is equivalent to
the choice, on the space-time manifold, of different time-
like unit vectors. The different families of hypersurfaces
orthogonal to these vectors represent the physical space at
a certain time in the judgement of different observers. From
the independence of the definition in Eq. (42) of the choice
of the integration hypersurface follows, therefore, the in-
dependence of P μ on the reference frame used to evaluate
it, and this constitutes the proof that P μ is a well-defined
four-vector.

Since P μ is independent from the choice of the integra-
tion hypersurface, one is free to choose the one which helps
better in solving problems. Historically, two choices have
been used in explaining, for example, the Trouton-Noble
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paradox. The first (see [9]) consists in considering the sur-
face at t = constant for any observer. This leads to the
usual expressions for the electromagnetic energy and mo-
mentum in a given frame:

Ee

c
= P 0

e =
1
2c

∫ (
ε0 �E2 +

�B2

μ0

)
dV (43)

and

�Pe =
1

μ0c2

∫ (
�E × �B

)
dV, (44)

where μ0 is the free space permeability.
While Eq. (43) and Eq. (44) do not constitute a four-

vector, one can straightforwardly solve the problem of the
lack of covariance by introducing Poincaré stresses.

The second choice consists in selecting t = constant in
the rest frame of the system:

Ee

c
= P 0

e =
1
c

∫ [
1
2

(
ε0 �E2 +

�B2

μ0

)
− �v ·

�E × �B

μ0c2

]
dV

(45)
and

�Pe =
γ

c

∫ [ �E × �B

μ0c
− �v

2
·
(

ε0 �E2 +
�B2

μ0

)
+

+ε0(�v · �E) �E + (�v · �B)
�B

μ0

]
dV (46)

In this case it can be easily shown (see [8], [9]) that the
electromagnetic part of the total energy-momentum pair is,
actually, a four-vector. This is, in fact, the same redefinition
of the four-momentum that Rohrlich used to deal with the
electron problem [8]. One can easily check (see [9]) that, in
this case, the non-electromagnetic part of the total energy-
momentum pair is zero.

All this illustrates the well-known fact that the in-
troduction of Poincaré stresses or the Rohrlich redefini-
tion of energy and momentum are, in fact, equivalent in
essence. The choice of the integration hypersurface is
a matter of taste for stable systems, since the only im-
portant quantity from a geometrical viewpoint is the to-
tal energy-momentum four-vector, given by the sum of
the electromagnetic and the non-electromagnetic part; this
sum, by definition, is independent from such a choice.
In other words, different choices of the hypersurface just
split the same, total quantity onto two parts (electromag-
netic and non-electromagnetic) in two distinct ways but, as
quoted from [9] : ”The split into electromagnetic and non-
electromagnetic parts is quite arbitrary”.

Our point is that this situation is completely different in
the case of unstable systems, where only electromagnetic
forces are present and Poincaré stresses are not.

In the case of unstable systems there is no way one can
define the total energy-momentum four-vector. This state-
ment is justified, from a mathematical viewpoint, by the
fact that

T μν
tot ;μ = T μν

e ;μ �= 0 ; (47)

in fact, from the previous discussion, we know that diver-
genceless is an essential ingredient for the independence
of the total energy-momentum pair from the choice of the
integration hypersurface.

Note that Eq. (47) means that there is a non-vanishing
four-force density field over the space-time. In the case dis-
cussed in the previous Section we gave a practical example
of the latter statements.

Of course, also for unstable systems, we may consider
an observer and find out the energy and momentum of the
system with respect to that observer, but this quantities will
not be covariant, nor we can recover covariance by integrat-
ing the energy-momentum tensor over a suitable hypersur-
face (as done with stable systems), since the electromag-
netic energy-momentum pair (which coincides now with
the total energy-momentum pair) would change Eq. (38)
and Eq. (39), thus giving an unphysical result on the sec-
ond term of Eq. (40), when compared with Eq. (25). The
latter discrepancy, to the authors view, is similar to the one
encountered in [10]. In that paper a system composed by
two electron is studied too and a comparison is proposed
between energy-derived mass mu (electrostatic energy di-
vided by c2), momentum derived mass mp (momentum di-
vided by γv, being v the system velocity) and self-force-
derived mass ms (self-force divided by γ 3a, a being the
system acceleration). The authors of [10] point out that
ms = mp �= mu and that the inequality between mp and
mu can be solved by redefining, following Rohrlich (see
[8]) the energy-momentum pair. Nevertheless, in this case,
one is left with a discrepancy between ms and mu. This
fact is perceived by the authors of [10] as an unsolved para-
dox. Actually the derivation of Eq. (16) (or equivalently,
of mu, treated with Rohrlich’s method) is performed under
the explicit assumption that energy and momentum consti-
tute a four-vector which is true only in the case of a stable
system. As a result, by comparing Eq. (16) and Eq. (25)
or, which is the same, mu (treated by Rohrlich’s method
or, equivalently, by introducing Poincaré stresses) with m s,
one is comparing quantities which refer to a stable system
with quantities which refer to an unstable one, thus giving
a paradoxical result.

Consider, as a last example, an unstable system formed
by different subsystems initially at rest in a certain frame
(as in the case discussed in the previous Section). In gen-
eral, while dealing with unstable systems, the knowledge of
dynamical quantities for the subsystems cannot bring any
information about the behavior of the system as a whole,
unless we have knowledge of the (electromagnetic) field
theory governing the interactions (which make the system
unstable).
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In our example of the previous Section, even if we can
measure, in a certain frame, the particle velocities when
they are far away from each other (thus no more interact-
ing) and if we know their rest masses, we cannot say any-
thing about energy and momentum of the total system with-
out the knowledge of the stress tensor, and the reason for
that is the presence of a non-zero four-force density field
(which we can account for only knowing the stress ten-
sor, i.e. the interaction theory) on that part of the four-
dimensional manifold on which we want to have informa-
tion.

Suppose our system was stable (think about an ideal
”rope” responsible for Poincaré stresses, or think, instead
of the case of two electrons, about a nuclear fission pro-
cess in which electromagnetic fields are, before the fission
event, balanced by the strong interaction). Put ourselves
in the laboratory frame, and imagine that, at a certain mo-
ment, for a certain reason (a collision with a neutron, for
example) the Poincaré stresses are not present anymore.
Thus the system becomes unstable, it breaks in two subsys-
tems and the electromagnetic interaction (if you’re thinking
about the nucleus imagine we are talking about a charged
ion) takes over. If we wait for enough time the two parti-
cles will get far away from each other and we can consider
them no more interacting.

At this point, the kinetic energy of the particles is equal
to the energy previously stored in the electromagnetic field
when the system was stable: thus we are able to get in-
formation about the total energy-momentum vector of the
stable system even if we do not know anything about the
stress tensor and the theory of the interaction between the
subsystems. In fact, the sum of the momenta of the two free
particles and the sum of their energies will give us, respec-
tively, the energy and the momentum of the stable system,
which form a four-vector again.

The reason is, simply, that there is no four-force density
field in that part of the space time on which we want to
have information: from a general viewpoint we can con-
clude that the presence of a four-force density, which char-
acterizes unstable systems, spoils without remedy the co-
variance of the energy-momentum pair. The only way to
recover such covariance would be to introduce a balancing
four-force density, i.e. to make the system stable.

In other words, in agreement with Poincaré, from the
stability of the system follows the covariance of the sys-
tem and, vice versa, from covariance follows stability: the
energy-momentumpair of an unstable system does not con-
stitute a four-vector. This conclusion may seem, at first
glance, of academical importance only. It has, indeed, very
practical consequences in modern electron beam physics.
Energy and momentum of an electron bunch are physically
measurable quantities and an electron bunch itself is a prac-
tical example of an unstable system. Nowadays, technol-
ogy allows the production of ultra high-brightness, intense
electron beams (to be used, for example, in self-amplified
spontaneous emission (SASE)-free-electron lasers operat-
ing in the x-ray regime). The production of such bunches

is one of the most challenging activities for particle ac-
celerators physicists. The description of these systems
would be completely incorrect without accounting for self-
interactions in the right way. We can conclude that, for
example, simulation codes (as well as analytical considera-
tions: actually, as already reminded, we wrote this paper af-
ter studying the self-interactions within an electron bunch)
which rely on the covariance of the energy-momentum pair
would give, a priori, wrong results which may be immedi-
ately confuted by experimental control. Technological de-
velopments often transform, as in this case, purely method-
ological issues into very practical ones.
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