A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pflueger, J.

Paper Title Page
WEPPH005 Magnet Sorting for the European XFEL Hybrid Undulator - Comparing Study 326
 
  • B. Faatz, J. Pflueger, Y. Li
    DESY, Hamburg
 
  Current permanent magnet material quality is insufficient to obtain field qualities in undulators, which satisfy FEL requirements. Therefore position and orientation of magnets have to be carefully chosen in order to obtain mutual cancellation of field errors. In this paper we compare two different sorting schemes, simulated annealing and a straight forward paring method. They are applied to a 5m prototype structure built for the European XFEL facility. The algorithms of these two methods are described in detail and the sorting results and the expected field qualities are carefully compared.  
WEPPH006 Study of Undulator Deformation Tolerance for the European XFEL 330
 
  • B. Faatz, J. Pflueger, Y. Li
    DESY, Hamburg
 
  The undulators for the European XFEL use NdFeB type permanent magnets. Even for perfect magnet material, the undulator quality degrades due to mechanical limitations, such as girder deformation, and temperature variation. Since the beam orbit can always be corrected, the main effect will be a variation in slippage between electrons and photon beam along the undulator. A careful estimation of the error budget is needed to avoid cost driving hardware efforts. We modeled deformation, gap variation and temperature error and used GENESIS to simulate the effect on the performance of the European XFEL.  
WEPPH038 Low Power Consuming Hybrid Bending Magnet at the XFEL Beam Dump 435
 
  • H. Danared, A. Hedqvist, F. Hellberg
    MSL, Stockholm
  • W. Decking, B. Krause, A. Petrov, J. Pflueger, M. Schmitz
    DESY, Hamburg
 
  At the end of the European XFEL the electron beam is separated from the photon beam and directed towards the beam dump with a bending magnet.* This dipole magnet is designed to bend 10-25 GeV electrons by 1 degree/m and is 10 meter long in total. By integrating permanent magnet material into a conventional electromagnet, this so called hybrid magnet with a 1 T bias magnetic field consumes no power at the nominal energy of the XFEL, 17.5 GeV. The magnetic field can be increased or decreased by magnet coils to obtain 1 degree/m deflection for all energies between 10 and 25 GeV. In case of component failures a passive safety system is needed to prevent the electron beam from reaching the experimental hall. The bias field of the permanent magnet not only saves power, but also works as a safety system for the XFEL. Here a proposal for such a hybrid configuration is presented together with its characteristics. The magnet is designed to use small amount of permanent magnet material and to consume less power than a conventional electromagnet.

*European XFEL Technical design report, edited by M. Altarelli et. al.,DESY 2006.