
HARMONIC LASING IN AN FEL AMPLIFIER

B. W. J. McNeil∗ and G. R. M. Robb, University of Strathclyde, Glasgow G4 0NG, UK
M. W. Poole and N. R. Thompson, ASTeC, Daresbury Laboratory, Warrington WA4 4AD, UK

Abstract

Recent proof-of-principle simulations have demon-
strated a scheme that allows a planar undulator FEL to lase
so that the interaction with an odd harmonic of the radia-
tion field dominates that of the fundamental. This harmonic
lasing of the FEL is achieved by disrupting the electron in-
teraction with the fundamental while allowing that of one
of the harmonic interactions to evolve unhindered. The dis-
ruption is achieved by a series of relative phase changes be-
tween electrons and the ponderomotive potentials of both
the fundamental and harmonic fields. Such phase changes
are relatively easy to implement and some current FEL de-
signs would require no structural modification to test the
scheme.

INTRODUCTION

Planar undulators allow a resonant on-axis FEL interac-
tion with odd harmonics of the fundamental resonant radi-
ation field. The main limiting factor in accessing the ex-
ponential harmonic interaction in a high gain FEL is the
dominance of the interaction at the fundamental. In this
paper a scheme of suppressing the fundamental FEL inter-
action is proposed which allows an harmonic to evolve to
saturation.

The scheme, first outlined in [1], uses a series of rela-
tive phase changes between the electrons and ponderomo-
tive potentials of the resonant fields at a series of points
along the FEL interaction. The phase of the electrons with
respect to the ponderomotive potential of the fundamen-
tal resonant wavelength is defined as ϑj where j = 1..N
and N is the number of electrons. The phase of the elec-
trons with respect the ponderomotive potentials of the nth
harmonic field is then ϑnj = nϑj + φn where φn is the
relative phase between the ponderomotive potential of the
fundamental and nth harmonic. If the phase of the elec-
trons with respect to the fundamental ponderomotive po-
tential is changed at a point-like region of the interaction by
a relative phase Δϑj = 2π/k then the corresponding phase
change for the harmonics will be Δϑnj = 2πn/k. Hence,
if k = n the electrons will be re-phased within the pon-
deromotive potential of the nth harmonic by 2π whereas
that for the fundamental will be 2π/n. While the 2π elec-
tron re-phasing of the nth harmonic should not adversely
effect its subsequent FEL interaction, the 2π/n electron re-
phasing of the fundamental can be expected to disrupt its
exponential growth. A schematic of electron phase space
of the fundamental and third harmonic interaction well be-
fore saturation and immediately following a relative phase
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Figure 1: Schematic of electron phase space showing the
fundamental seperatrix (black) and 3rd harmonic sepera-
trix (blue) following a relative phase shift of 2π/3 by both
fundamental and 3rd harmonic ponderomotive potentials.

shift of 2π/3 is shown in Fig. 1. (Note that here the rela-
tive phase shift has been applied to the ponderomotive po-
tentials rather than the electron phases.) It can be seen that
while such a phase shift does not effect the relative phases
of the electrons with respect to the separatrix of the third
harmonic, the mean electron bunching phase has shifted
with respect to the ponderomotive potential of the funda-
mental. It is this shift that disrupts the exponential FEL
instability of the fundamental.

THE 1D MODEL

The harmonic bunching of electrons in a high gain FEL
was investigated in the 1-D limit in [2]. A similar notation
for the FEL equations is used here:

dϑj

dz̄
= pj (1)

dpj

dz̄
= −

∑
h,odd

Fh (ξw)
(
Aheihϑj + c.c.

)
(2)

dAh

dz̄
= Fh (ξw)

〈
e−ihϑ

〉
, (3)

where j = 1..N are the total number of electrons, h =
1, 3, 5... are the odd harmonic components of the field,
ξw = a2

w/2(1 + a2
w) and Fh(ξw) are the usual difference

of Bessel function factors associated with planar wiggler
FELs. Other symbols having their usual meaning [2].

In the 1D scaling and analysis that follows both the un-
dulator period, λw, and the initial electron average beam
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energy, γ, are assumed constant. Tuning of the fundamen-
tal resonant radiation wavelength is therefore achieved by
variation in the undulator magnetic field alone.

The FEL interaction is investigated for single radiation
wavelength operation using both the normal mode of oper-
ation (where the wavelength is the fundamental) and in the
harmonic lasing mode as described above where the wave-
length is at an odd harmonic. The undulator must there-
fore have two different settings. In the first mode the RMS
undulator parameter aw = a1 and is set so that the funda-
mental resonant wavelength is λf = λ1 giving harmonic
resonant wavelengths λh = λ1/h, h = 3, 5, 7, . . .. In the
second mode the undulator parameter is reset to aw = an

so that the new resonant fundamental wavelength is the nth
harmonic, one of the odd harmonic numbers, of the first
mode setting, i.e. λf = λn. For the assumed fixed beam
energy and undulator period, it is simple to show from the
FEL resonance relation that a1 and an must satisfy the re-
lation:

1 + a2
1

1 + a2
n

= n. (4)

Hence, there are no real solutions an for a1 < ac =√
n− 1, i.e. for a1 < ac it is not possible to re-tune the

undulator to a fundamental wavelength λf = λn.
The universal scaling parameter, ρ = (awωp/ckw)2/3/γ

[3, 2], of (1..3) is that for the undulator parameter aw = a1

i.e. when the undulator is tuned so that the fundamental
wavelength λf = λ1. When the undulator is tuned so that
the fundamental wavelength λf = λn then using identical
scaling as (1..3) and neglecting all harmonics h > n:

dϑj

dz̄
=

pj

n
(5)

dpj

dz̄
= −an

a1
F1 (ξn)

(
Aneinϑj + c.c.

)
(6)

dAn

dz̄
=

an

a1
F1 (ξn)

〈
e−inϑ

〉
. (7)

The equations (1..3), truncated at h = n, and (5..7) form
the working set of equations for the remainder of this paper.

LINEAR THEORY

Linear analysis using standard methods [3] allows the
1-D gain lengths of the FEL interaction to be calculated
for the two single wavelength operation undulator modes
as described in the previous section. As was shown in [2],
the harmonic evolution of (1..3) have two separate regimes
of evolution before the fundamental saturates. For small
values of the bunching at the fundamental, both fundamen-
tal and harmonics are uncoupled and evolve exponentially
with gain lengths determined only by the independent pa-
rameters. However, as the exponential growth of the bunch-
ing at the fundamental wavelength λ1 progresses, the har-
monics become strongly driven by the interaction at the
fundamental. In the cold-beam limit this results in a dra-
matic reduction in the gain length of the harmonic to 1/hth
of that of the fundamental.
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Figure 2: Comparison of gain lengths as a function of a1

for a fixed wavelength using the undulator tuned for the
harmonic lasing scheme of case 1): l3h (green)) and tuned
for lasing at the fundamental case 2): l3f (blue).

Here, we assume, as will be shown in subsequent sec-
tions, that the scheme of disrupting the exponential growth
of the fundamental works as described above and therefore
that there is no growth of the fundamental. The gain lengths
of a single wavelength λ = λ3 are compared for the two
cases: 1) 3rd harmonic interaction at wavelength λ3 with
gain length l3h (fundamental is disrupted) and 2) undulator
re-tuned to fundamental λf = λ3 with gain length l3f . To
aid comparison these gain lengths are scaled with respect
to the un-disrupted fundamental gain length l1f of case 1).
Using the results of [2, 4] it is simple to show that this re-
sults in:

l3h

l1f
=

(
F 2

1 (ξ1)
3F 2

3 (ξ1)

)1/3

(8)

l3f

l1f
=

(
a1F1 (ξ1)
a3F1 (ξ3)

)2/3

(9)

These expressions are plotted in Fig. (2) as a function of the
undulator parameter a1. The value of the re-tuned undula-
tor parameter (case 2) is obtained from (4) with n = 3.
It is seen from the plot for l3f/l1f that the gain length
l3f → ∞ to as a1 →

√
2. This is the limit a3 → 0 in

equation (4) corresponding to the minimum fundamental
wavelength achievable and where FEL coupling no longer
exists. Furthermore, note that the gain length for the dis-
rupted fundamental scheme of case 1), l3h < l3f . This is
generally true for all odd harmonics n. Thus, for a fixed pe-
riod undulator and in the 1-D, cold beam limit, when tuning
an FEL interaction to a shorter wavelength by a factor 1/n
the FEL gain length is always shorter by using the disrupted
fundamental scheme of lasing than by a simple re-tuning of
the undulator magnetic field (where that is possible under
the restrictions of equation (4)).
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Figure 3: Scaled intensities of fundamental |A1|2 (green)
and third harmonic |A3|2 (red) for undulator parameter
a1 = 4 demonstrating the effects of relative phase changes
of Δϑ = 2π/3 at z̄ = 4, 5, 6, . . . , 24. For the undulator pa-
rameter re-tuned to a3 = 2.16, A3 is the fundamental and
a separate simulation shows how |A3|2 (blue) evolves.

NUMERICAL SIMULATION

The system of FEL equations (1..3) were solved numer-
ically, with undulator parameter a1 = 4, to demonstrate
the harmonic lasing scheme as described above. The re-
sults are shown in Fig. (3). A numerical solution of equa-
tions (5..7) is also shown on the same scale to demonstrate
the solution when the undulator parameter is re-tuned to
a3 = 2.16 so that λ3 is the fundamental. The resonant,
cold beam limit is assumed with an electron distribution
pj = 0 ∀ j, so that the spread σp = 0. It is seen that for
z̄ > 4 the exponential instability of the fundamental scaled
intensity (green) is disrupted by the series of Δϑ = 2π/3
relative phase changes so that |A1|2 � 1 throughout the
interaction. However, the simultaneous evolution of the
third harmonic (red) is unaffected, remaining resonant and
evolving exponentially to saturation. Note that the intensity
|A1|2 � |A3|2 at the beginning of the interaction and acts
as a seed field. If A1 has good longitudinal coherence prop-
erties these may be transfered to the shorter wavelength in-
teraction for A3.

When the undulator is re-tuned to a3 = 2.16, so that
λ3 is the fundamental (blue), it seen that the gain length
is longer. The relative gain lengths agree with the linear
theory of the previous section. Despite the lower growth
rate, however, the saturation intensity is larger. It is seen by
comparing equations (1) and (5) that, for the same energy
spread, the phase velocity spread is a factor n times larger
for the case of harmonic lasing. This reduces the electron
energy spread and so the radiation intensity at saturation
increases for the case of harmonic lasing.

The effect of an n-fold increase in the phase velocity
spread for harmonic lasing also increases the homogeneous
energy spread requirements of the electron beam at the be-
ginning of the interaction. For normal FEL interaction at

Figure 4: The effect of energy spread on harmonic las-
ing. The third harmonic |A3|2 of Fig. (3) (red) is plot-
ted for scaled Gaussian energy spreads in p of σp =
0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. The growth rate de-
creases monotonically with σp. The fundamental (green of
Fig. (3)) is not shown.

Figure 5: The effect of energy spread for a re-tuned
undulator parameter of a3 = 2.16 making A3 is the
fundamental. The fundamental |A3|2 of Fig. (3) (blue)
is plotted for scaled Gaussian spread in p of σp =
0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. The growth rate de-
creases monotonically with σp.

the fundamental this may be expressed as σγ/γ < ρ or
equivalently in the scaling used here σp < 1. For harmonic
lasing this requirement is increased to σp < 1/n. The ef-
fect of this on harmonic lasing is clearly seen by comparing
the results of Figs. (4) and (5) where the results of Fig. (3)
are extended to include the effects of initial Gaussian en-
ergy spreads of σp = 0, 0.1, 0.2, . . . , 0.5.

One can conclude that harmonic lasing at λ3 is much
more sensitive to the effects of electron beam energy spread
than fundamental lasing at λ3 (if a1 > ac makes this possi-
ble). This may be explained intuitively by reference to Fig.
(1) which shows the phase space and seperatrix of the as-
sociated ponderomotive wells of the fundamental and har-
monic. For a given spread in p, because there are n times
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the number of harmonic ponderomotive wells than the fun-
damental, the spread appears n times as great to the har-
monic interaction. The benefit of tuning the undulator so
that the harmonic becomes the fundamental is therefore
that the spread in p is reduced by 1/n (see equation 5)
which may well improve the growth rate above that of the
harmonic lasing scheme. Nevertheless, from equation (4),
when a1 < ac it is not possible to re-tune the undulator so
that the harmonic becomes the fundamental. (Of course,
this will also be true where both undulator period and gap
are fixed and any tuning is achieved via variation of the
electron beam energy.) In the examples above a1 = 4, well
above the critical value ac =

√
2.

In addition to describing the uncoupled linear evolution
of the fundamental and harmonic interactions, the work
of [2] showed that evolution of the bunching at the funda-
mental also drives the nth harmonic field at a growth rate
of n times that of the fundamental. This nonlinear cou-
pling is seen in Fig. (6), where the fundamental and har-
monic fields are plotted for a harmonic lasing scheme, here
with a1 = 1 < ac. A Gaussian energy spread parameter
of σp = 0.1 is used. The plot shows the evolution of the
fundamental (black) and third harmonic (red) with phase
changes of 4π/3 at z̄ =8, 9, 10,. . . . The third harmonic is
also shown (green) for phase changes of 2π/3 at z̄ =8, 9,
10,. . . . (The fundamental is not shown for this case.) Ac-
cording to linear theory, there should be no difference be-
tween the harmonic lasing for the two cases of 4π/3 and
2π/3 phase changes and this is the case until z̄ ≈ 8.5.
Thereafter, for 4π/3 phase changes (red), the harmonic is
seen to attain a saturation intensity of approximately 2 or-
ders of magnitude greater than that for 2π/3 phase changes
(green) and also, not shown, approximately one order of
magnitude greater than that if no phase changes are applied
and the fundamental evolves to saturation in the usual way.
The difference in behaviour between the two cases is due to
the fact that the electrons remain coupled to the fundamen-
tal which continues to drive the bunching at the harmonics.
For the case of 4π/3 phase changes the fundamental con-
tinues to bunch the electrons in a way similar to that of [1]
when phase changes of π are used with the FEL interac-
tion to enhance the bunching at the fundamental. For 2π/3
phase changes, the fundamental interaction does not bunch
the electrons as well, greatly reducing the non-linear driv-
ing of the harmonic.

CONCLUSIONS

A scheme for ‘taming’ the fundamental high-gain FEL
instability in a planar undulator has been proposed in a
way that allows an odd harmonic to remain resonant and
evolve exponentially to saturation. The series of relative
phase changes between electrons and the ponderomotive
wells should not be difficult to implement. In particu-
lar, for FELs requiring long interaction lengths and em-
ploying many undulator sections, typical of VUV to x-ray
FELs, methods of altering the relative phase already ex-

Figure 6: The scaled intensities of |A1|2 (black) and |A3|2
(red) for phase changes of 4π/3 at z̄ = 8, 9, . . . , 24 after
non-linear harmonic coupling around z̄ ≈ 7. For phase
changes of 2π/3, the growth of the harmonic |A3|2 (green)
demonstrates less beneficial non-linear coupling to the fun-
damental.

ist in the ‘phase-matching’ devices between undulator sec-
tions - an experiment to test the validity of the harmonic
lasing scheme would therefore incur little or no cost. As
with many schemes that attempt to exploit harmonics elec-
tron beam quality has been shown to be problematic. Nev-
ertheless, the scheme does offer access to improved har-
monic emission and may enable FELs to out-perform their
original design specifications at shorter wavelengths e.g.
it would be interesting to apply the scheme to the mod-
ulator section of a multiple undulator set-up such as that
used in High Gain Harmonic Generation. No attempt has
been made here to optimise the size of phase changes to
attain higher saturation intensities. Trial simulations have
demonstrated that this is possible. Other phase-changing
schemes may also offer alternative opportunities to con-
trol the electron-radiation interaction. For example, phase
changes post saturation of fundamental lasing may act as a
form of tapering to enable further energy extraction from
the electrons. In short, this method is a potentially useful
tool and offers greater control of the FEL interaction.
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