quadrupole
Paper | Title | Other Keywords | Page |
---|---|---|---|
TUOC002 | Undulator Systems and Photon Dignostic Plans for the European XFEL Project | undulator, sase, x-ray, radiation | 378 |
| |||
The undulator systems for the European XFEL project will produce 0.1nm radiation. Their length will exceed 200m. they will be segmented into 40-50 segments. There will be very demanding requirements on the performance of the undulator segments. The concept for building these systems will be explained in detail. This includes drive systems, magnet structures, control systems, phase shifter and othe components in the intersections as well. An important role plays the photon diagnostic station which is foreseen for each SASE FEL beam line. It can be used for steering the beam through the undulator line, for precision gap tuning of individual undulator segments and for precise phase matching of neighbouring devices. An important role plays the interaction with the undulator control system. |
|||
THPP036 | Measurement of Slice-Emmittance using Transverse Deflecting Structure | slice, emittance, cavity, kicker | 541 |
| |||
Among the very critical parameters for the operation of the VUV-FEL at DESY are the slice-emmittance and beam optics matching of the current peak in the electron bunch. Conventional tools for measuring the beam size are sensitive to the projected properties of the bunch only and hence suffer from mixing of different parts of the bunch. A combination of streaking with a transverse deflecting rf structure (LOLA) and a quadrupole scan allowed to measure the spike separate from the rest of the bunch. Indeed significant differences in terms of emmittance and optical functions have been found. |
|||
THPP052 | Quantitative Evaluation of Transverse Phase Space Tomography | phase-space, emittance, energy-spread, gun | 592 |
| |||
Transverse phase space tomography [1] using a quadrupole magnet and a beam profile monitor is very useful for emittance measurements especially for non-Gaussian beams, since this method directly gives transverse phase space distributions. We have tried to apply the method to measure the beam emittance of our FEL driver Linac [2]. We found, however, this method suffers from both the energy spread of the beam and the reconstruction noise which deeply depends on the reconstruction algorithm. To obtain reliable results, numerical evaluation using PARMELA which simulates the beam profile in each rotation angle has been carried out. Several image reconstruction method, such as FBP method, ART method, and Ordered Subsets - Expectation Maximization (OS-EM) algorithm [3], have been applied to reconstruct the phase space distribution. We also have introduced a noise cut procedure, and evaluation of a tolerable energy spread where this method can be applied. [1] C.B. McKee, et al., NIM A 358 (1995) 264. [2] K. Masuda, et al., Proceedings of the 2004 FEL Conference 450. [3] H.M. Hudson and R.S. Larkin, IEEE Trans. Med. Imaging, 13:601 (1994). |
|||