ERL 2017, CERN, Geneva WEIDCC004

Do ERLs dream of SRF guns?

system - From design to first RF commissioning results

The bERLinPro SRF Photoinjector

Axel Neumann

For the bERLinPro team and collaborators

bERLinPro: Demonstrator for a low emittance, high brilliance Energy Recovery Linac (see talk A. Jankowiak this morning)

Linac Cavities (3): 2x100 mA, 3x14.5 MeV Energy recovery

	Basic Parameter
max. beam energy	50 MeV
max. current	100 mA (77 pC/bunch)
normalized emittance	1 μm rad <mark>(0.6 μm rad)</mark>
bunch length (straight)	2 ps or smaller (100 fs)
rep. rate	1.3 GHz
losses	< 10 ⁻⁵

Gun Cavity: 100 mA, 2.3 MeV

Main goal:

High current, low emittance ERL operation using CW SRF technology

Booster Cavities (3): 100 mA, 2x2.1 MeV

1x zero-crossing

A. Neumann, ERL 2017, CERN, Geneva

Dump: 65<u>0 kW</u>

Gun, from the cradle to the....modul!

Overall layout of the cavity: Medium power prototype

Stiffening ring: $\Delta f/\Delta P$ minimized to reduce microphonics

HZDR cathode insert and choke cell design:

Proven system Cathode exchange with HZDR

Blade tuner with motor and piezo tuner: *Microphonics compensation*

> Modified KEK-based FPC Goal: 120 kW CW

 $0.4\cdot\lambda/2$ cell + full cell: Optimized emission phase Chimney 22 cm²~35 W at 1.8 K about E_{peak} =45 MV/m at Q₀=3.5[.]10⁹

106 mm beam tube: Allows propagation of lowest TM₁₁₀ mode: *HOM studies*

3 pick-up antennas to measure HOM polarization

2xCW modified TTF-III Coupler: $Q_{ext} 3.6 \cdot 10^{6}$ for up to I_{avg} =4 mA, 10 kW each Study 2 coupler operation \rightarrow High power version next step 5

Cold String layout

Optimization goals for RF properties

- Highest E_{emitt} favorable, but cathode also functions as field emitter (low work function)
 → highest on-axis field E_{max} few mm behind cathode to reduce dark current and still allow high performance
 - \rightarrow Length of half-cell optimized for high emission phase ϕ_{emitt}
 - → By retractable cathode and backwall inclination E_{cath}<E_{max} and focussing RF effect increased
- Any losses and thus field in insert area minimized by filter (Choke cell)

Design parameters and results achieved

Field emission and dark current issues

A. Neumann, ERL 2017, CERN, Geneva

z (m)

9

Eva Panofski, IPAC17 Kobenhavn, THPAB009

EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

optimizing 6 parameter:

laser spot size / pulse length / cathode positon / phase / amplitude / solenoid

After 50 generations of the evolution process.

Reality check: Production status after welding

Series of Horizontal Gun1.0 tests at HoBiCaT

The strong multipacting seen at 18-20
MV/m was also seen by oscillating
superleak transducers in vertical test.
→ Multipacting reconstructed by simulations

 Main design criterion is the onaxis peak field E₀

 \rightarrow Cathode field during emission

- RF losses are of less impact, but low dark current required
- Test at HoBiCaT under vertical test configuration (β_c ≤1)

2nd test series after workshop modifications

After work on the helium vessel a further test was required:

- Unfortunately the cavity was vented by a short vacuum hose
- Cavity multipacted and eventually quenched at low fields
- This was overcome by RF processing (yellow dots)→ finally quenched at 35 MV/m
- The cavity was recovered
 by thermal cycle above T_c and achieves the design field of bERLinPro

Peak fields achieved: E_{peak} =57.3 MV/m B_{peak} =110.4 mT Corresponds to E_{acc} =26 MV/m of a TESLA cavity

Green data points: Q_0 measured by helium evaporation

Cold string assembly

• After horizontal acceptance test assembly of small cold string in ISO4/5 clean room:

Valve, RF coupler, Cavity, cathode cooler with Petrov filter, gate valve and cathode tube with corner valve

 Follow up horizontal test in module configuration to check if cavity "survived" procedure, achieve bERLinPro goal

Impressions of the assembly

Mounting of the Petrov filter and cathode carrier

What do you see here: 3 pick-up antennas

Ports for twin coupler arrangement

Part of half-cell back wall, large grain Niobium, grain boundaries visible

Final steps of assembly

 \rightarrow Install cold string for horizontal acceptance test

A. Neumann, ERL 2017, CERN, Geneva

Special thanks to DESY MKS-3: A. Matheisen, M. Schmökel, for training, support, discussion and participation in cold string assembly!

All that remains

Acceptance test of assembly

Q₀ conserved after cold string assembly

Blue diamonds taken after pulse processing by He 2K gas flow, higher field possible, but not done as of radiation limit A. Neumann, ERL 2017, CERN, Geneva

Parameter	VTA JLab	HTA HZB	Cold string HZB	Module
$E_0 (\mathrm{MVm}^{-1})$	34.9	34.5	28.5 [§]	-
$E_{\text{peak}} (\text{MVm}^{-1})$	58	57.3	47.3	9
\vec{B}_{peak} (mT)	111.8	110.4	91.2	
low field Q_0	$1.2 \cdot 10^{10}$	$1.1 \cdot 10^{10}$	$9.6 \cdot 10^9$	-
$\Delta f / \Delta E_0^2 (\mathrm{Hz}\mathrm{MV}^{-1}\mathrm{m})^2$	-4.7	-3.7	-3.4	-
$\Delta f / \Delta P_{\rm LHe} ({\rm Hzmbar}^{-1})$	-561	150	33	-
$\Delta f / \Delta l$ (Hz/step)	-	-	2.3 (1.8 K)	3.8 (300 K)

SRF properties conserved so far, mechanical properties close to design

A. Neumann, ERL 2017, CERN, Geneva

It is crucial to evaluate the cavity performance at every major step or change to the system:

- Measure cavity's Q₀ and field level after module assembly, all valves closed (We are here)*
- Measure cavity again after opening of shutter valves to diagnostic beam line and cathode transfer chamber
- Characterize the same properties after insertion of the cathode

*However, this was risky:

P. Kneisel, SRF 1995, Effect of Cavity Vacuum on Performance of Superconducting Niobium Cavities: Degradation of electron loaded cavities in surface resistance and field (field emission) if starting pressure $\geq 1.10^{-4}$ mbar

We were on the edge, but gave it a try

Installation of Gun Module in Gunlab

Cooldown results

Uniform cathode holder movement during cooldown, about 50µm from 300 K to 80 K Monitored by cryo compatible capacitive sensors

- Cryo-systems works fine.
- However, thermal bridge between probably 80K system and 2K system observed. Reasons not fully understood → HGRP and returned gas in cold-box
 - both showed elevated temperature (25 K)
- Therefore cooling from filling line below cavity (Not JT).
- Some coupling in helium loss data when system gets a refill with liquid

The RF/LLRF measurement set up

A. Neumann, ERL 2017, CERN, Geneva

Total Q_L=1.3.10⁷

Blue dots show measured RF signals and their power levels

 $\mathsf{P}_{\mathsf{choke}}$

To understand the system and cavity's transient RF response, i.e. state, we need to measure all those signals

Unfortunately, the couplers were not 100% symmetric assembled because of geometry deviations of ports

Two coupler operation: Magic Tee

Invented during WWII, published W. A. Tyrell (of Bell Labs) in 1947

23

It's a kind of magic....magic tee pulsed behaviour

Field emission, MP?

Q₀ and field of first module test (last week)

VTS/HTS+ cold string × JLab final VTA ▼ HZB 2nd HTA First module data • HZB 3rd HTA 2.5 Cold string test -10 W • Q_0 by helium flow -|2 10W 10¹⁰L () 1.5 Ш^{kin} ര് ·××××××× × 10¹⁰ 0.5 ő MP RF Thermal regime + **processing** -0 30 35 40 10⁹ 10⁹ runaway 10 15 20 25 0 5 E₀ (MV/m) →>2 g/s 10 Cold string data Module data 10⁰ 1.0 MeV Radiation dose (µSv/h) 10⁸ 10 20 25 30 35 5 15 40 0 E₀ (MV/m) Earlier field emission 10 on-set 10⁻⁵ 5 10 15 E₀ (MV/m) 20 25 30

The coming weeks:

- Operating license received, opening of gate valve possible
- Warm up to room temperature, establish vacuum system via foreseen pump ports at beam line and transfer chamber
- Cooldown again with proper vacuum condition
- Currently vacuum level low 10⁻¹⁰ mbar next to module
- Follow-up cooldown week after ERL17
- First RF test w/o cathode (+dark current)
 → cathode transfer of Cu cathode
 → again RF test with cathode (+dark current)
 → LLRF commissioning
- First beam on screen

Acknowledgments

Incomplete list of people helping with collaborative effort and discussion:

J. Teichert, A. Arnold, P. Kneisel, M. Liepe, R. Rimmer, H. Wang, W. Xu, S. Belomestnykh, E. Zaplatin, E. Kako, T. Konomi R. Eichhorn, J. Sekutowicz, G. Ciovati, L. Turlington, D. Reschke, A. Matheisen, M. Schmökel, B. van-der-Horst, V. Volkov, D. Kostin, I. Will, W.-D. Möller + many more

and the HZB gun cavity and high brightness beam teams + the bERLinPro team members

D. Böhlick, A.B. Büchel, M. Bürger, P. Echevarria, A. Frahm, H.-W. Glock, F. Göbel, S. Heling, K. Janke, T. Kamps, S. Keckert, S. Klauke, G. Klemz, J. Knobloch, G. Kourkafas, J. Kühn, O. Kugeler, B. Kuner, N. Ohm, E. Panofski, H. Plötz, S. Rotterdam, M. Schenk, M.A.H. Schmeißer, M. Schuster, H. Stein, C. Schröder, Y. Tamashevich, J. Ullrich, A. Ushakov, J. Völker +...

Merci beaucoup

Workshop: Reliably operating SRF in a 'Dirty' accelerator

HZB Helmholtz Zentrum Berlin BESSY VSR

14th - 15th September 2017 Helmholtz-Zentrum Berlin

<u>Aim:</u> to gather together the expert community to compile experience with these operating conditions and develop recipes for the reliable operation of high-voltage SRF.

Topics of interest

- Contamination of SRF cavities and how to deal with it.
- Cleanliness of the cavities
- Long-term performance degradation and mitigation schemes
- Dealing with synchrotron radiation
- Particle transport
- Design of cryogenic plant and helium transfer system

Important Dates

Deadline for submission of abstracts, registration and payment: 31st August 2017

For more information please contact: <u>emmy.sharples@helmholtz-berlin.de</u> Registration Online now at: <u>https://www.helmholtz-berlin.de/events/operating-</u> srf/index_en.html

What are the challenges for SRF Photoinjector Cavity design?

bERLinPro needs to preserve and recirculate a:

 Low emittance beam with high peak brightness and high average current

- Dark current level as low as possible to mitigate beam Halo
 - Low emittance < 1μ rad:
 - High electric field component at cathode during bunch emission to counteract space charge driven beam expansion
 - Sufficient large radial field components for beam RF focusing
 - Energy gain of 2.3 MeV at high launch phase using the given forward power level to full extend *coupler limit, transmitter limit*

Peak brightness 77 pC @ 1.3 GHz (see talk J. Kühn on Monday):

• Insert a high quantum efficiency NC semi-conductor cathode in SC environment $\underbrace{\langle SC requires dust free environment, thermal isolation}$

High average current 100 mA:

• Achieve good HOM damping capabilities. Absorber as close as possible solenoid as close as possible, SC solenoid

Dark current: Avoid, if possible, highest field on axis on cathode surface and opening of back wall *low emittance, low cathode work function*

SRF: Keep field ratios low (e.g. B_{peak}/E_{max} as Hc1 Nb about 160mT)

E₀=11.1 MV/m

After ten minutes of stable operation these events appeared: 1.25 Hz, some MP? Field emission remained constant within slow integration time of radiation sensor

Helium losses ran up from 0.63 g/s to 1.2 g/s and increasing → RF off

 $Q_0 = 1.06 \cdot 10^9$ decreases to $Q_0 = 3.65 \cdot 10^8$

Multipacting in half cell at $E_0=18$ MV/m

mpscale=0.7

mnscale=1.8ⁱ mpscale=2 01428571428

mnscale=0.864785714785

mnscale=1 521428571428

mnscale=2.5071428571429

ampscale=2.6714285714286 ampscale=2.835714285714 mpscale=3

33

Multipacting triggered by field emission

Comparing design and produced model

• SEY of etched and water rinsed Nb surface has a peak of ~2.3 at 250 eV

CW operation: A electro-magnetic-mechanical-thermo-acoustic coupled problem?

First LLRF results for cold string

Limited in power to 2 kW average, non optimized loop, ponderomotive effects by large Lorentz force detuning

	E ₀ (MV/m)	8	15	20.1	8 + construction site
A. Neuman	$\sigma_{\phi}(deg)$	0.06	0.08	0.06	0.55
	σ _A /A	2.6e-4	2.6e-4	2.4e-4	5.6e-4
	σ _f (Hz)	2.9	5.4	6.5	28.8
	K _P	100	118	221	100

