

## The Development of the DC-SRF Photoinjector at Peking University

Presenter: Huamu XIE

Kexin Liu, Shengwen Quan, Feng Zhu, Lin Lin, Liwen Feng, Jiankui Hao, Senlin Huang, Fang Wang, Huamu Xie, Weilun Qin, Wei Cheng, Kui Zhao, Jia-er Chen

> Institute of Heavy Ion Physics, School of Physics, Peking University



- Stable Operation of DC-SRF Photoinjector
- > Lower emittance of the DC-SRF injector
- New Photoinjector design
- > Summary

## Peking University Superconducting ERL Test Facility (PKU-SETF)



06/18/2017

ERL 2017, CERN



## **Development of DC-SRF injector**





- 1) The photocathode is installed out of the superconducting cavity, Q degradation caused by the contamination from the cathode material would therefore be avoided and dark current from the photocathode could also be reduced. As a result, the accelerating field of the cavity could be kept at a high value.
- 2) Possibility of quenches caused by photoemission on the inner wall would be reduced due to the narrow beam channel between the Pierce electrodes and the superconducting cavity.
- 3) The structure is **compact** and **the short distance of electron drift is helpful to suppress the emittance increase** due to space charge effect



## **Development of DC-SRF injector**



#### Designed in 2007, Commissioned in 2014



- 3.5-cell large grain cavity has been used
- > Vertical test at Jlab:  $23.5 \text{ MV/m} @ Q_0 > 1E10$
- Assembling and connected to 2K cryogenic system in 2010
- RF test experiments and preliminary beam test in 2011
- Upgrade of RF power supply, beam line since 2012
- Upgrade of drive laser since 2013
- Stable electron beam in 2014







 $E_{acc}$  in different conditions have been investigated

- E<sub>acc</sub> was increased up to 17.5 MV/m in pulsed mode with a duty factor of 10% and a repetition rate of 10 Hz.
- $\succ$  E<sub>acc</sub> reached 14.5 MV/m for CW mode



 Amplitude (up) and phase (below) signals of 3.5-cell
 DC-SRF injector at 12.9MV/m without
 beam load.

06/18/2017



## Associated auxiliary systems



ERL 2017, CERN



#### Beam Line



![](_page_9_Picture_0.jpeg)

#### **Operation parameters of the DC-SRF injector**

| Parameter                | Value | Unit    |
|--------------------------|-------|---------|
| Eacc                     | 14.5  | MV/m    |
| DC voltage               | 50    | kV      |
| Beam Energy              | 3.4   | MeV     |
| Beam current             | ~1.0  | mA      |
| Bunch length(FWHM)       | ~5    | ps      |
| RF amplitude instability | <0.1  | %       |
| RF phase instability     | <0.02 | degree  |
| Dark current             | <1.0  | nA      |
| Beam emittance           | 1.5   | mm.mrad |

![](_page_10_Picture_0.jpeg)

## THz by the DC-SRF injector

![](_page_10_Figure_2.jpeg)

0.3 0.35 0 Radiation Frequency (THz)

0.4

0.45

0.5

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

06/18/2017

0.2

0.25

0.2

0

0.15

ERL 2017, CERN

![](_page_11_Picture_0.jpeg)

#### Beam experiment and UED

![](_page_11_Figure_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

06/18/2017

### Beam emittance of DC-SRF injector

![](_page_12_Figure_1.jpeg)

06/18/2017

![](_page_13_Figure_0.jpeg)

![](_page_14_Picture_0.jpeg)

## Parameters and Results

| Variables          | Min  | Max  | Units  |
|--------------------|------|------|--------|
| Laser pulse length | 5    | 15*  | ps     |
| Laser rms size     | 0.5* | 2    | mm     |
| 3.5 cell Ez,max    | 12   | 25*  | MV/m   |
| 3.5 cell phase     | -30  | 30   | degree |
| Solenoid Bz,max    | 200  | 1500 | Gs     |
| Solenoid position  | 1*   | 2    | m      |

![](_page_14_Figure_3.jpeg)

DC High voltage @ 100 kV Photocathode: K<sub>2</sub>CsSb Result:  $\epsilon_{nx} = 0.44 \mu m$ Laser pulse length@ 11.3 ps Laser size: 1.13 mm E<sub>z,max</sub> @ 23MV/m RF phase @ -17 deg Solenoid field: @ 840 Gs Solenoid position:@ 1.25m

 $\frac{\epsilon_{thermal}}{\epsilon} = 69\%$ 

06/18/2017

![](_page_15_Figure_0.jpeg)

- Upgrade/optimization of the DC-SRF photoinjecter to lower emittance( < 1 mm.mrad @100 pC )</p>
- Improved drive laser system
- New designed photo-cathode preparation system
- New design of DC part for higher DC voltage
- New cryomudule for lower heat loss

![](_page_16_Picture_0.jpeg)

## Temporal(longitudinal) shaping

![](_page_16_Figure_2.jpeg)

Pulse stacking——birefringent crystals

- Generate delayed pulses along the ordinary and extraordinary axes of birefringent crystals
- Time separation depends on
  the crystal length and on Δn
- The rise and fall time and the ripples depend on the input pulse
- Interference between pulses
  is reduced by cross
  polarization
  - Though with limited parametric flexibility, it is relatively simple and robust

 $\geq$ 

<sup>06/18/2017</sup> 

## Spatial(transverse) shaping

![](_page_17_Figure_1.jpeg)

#### **Clipped with aperture**

- Overfilled iris cuts out the inner flat part of laser beam
- Loss is large but simple
- Widespread for photoinjector application

#### Aspheric optics

- High transmission (90%), commercial available Systems
- High-precision fabrication process is needed
- Sensitive to input laser parameters: shape, size and collimation

![](_page_18_Picture_0.jpeg)

#### New Photocathode deposition system

![](_page_18_Picture_2.jpeg)

- Vacuum in deposition chamber and transport chamber can reach up to low 10<sup>-9</sup> Pa with a sputtering ion pump (400L/s) and a SAES NEG pump (3500 L/s and 2000L/s)
- SAES alkali sources and effusion sources can both be used in the system.
- The temperature of the substrate puck can be controlled from 4 K to 800 K.
- Alkali based photocathode, Cs<sub>2</sub>Te, K<sub>2</sub>CsSb, K<sub>2</sub>NaSb, GaAs etc can be grown on this system.

![](_page_19_Picture_0.jpeg)

- Stable operation of the DC-SRF injector(1.3 GHz) has achieved. The compatibility between cathode material and superconducting cavity can be solved by using the DC-SRF structure
- ➢ Simulation shows that with bialkali photocathode (K₂CsSb), Laser shaping, Higher DC voltage(100 kV), etc. Electron beam with emittance ~0.5 µm @100 pC can be achieved with present the DC-SRF injector(1.3 GHz).

>A new photoinjector is being designed for lower emittance

![](_page_20_Picture_0.jpeg)

• Thanks for the useful discussion on the new photocathode deposition system from Dr. Erdong Wang, Dr. Triveni, Dr. Ilan Ben-Zvi, Dr. Shukui Zhang etc.

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

# Thank you !

ERL 2017, CERN

06/18/2017