

Injector Status and Challenges for CBETA

Karl Smolenski

for the CBETA Injector Team:

John Barley, Adam Bartnik, Ivan Bazarov, Luca Cultrera, Colwyn Gulliford, John Dobbins, Tobey Moore, Peter Quigley, John Reilly, Vadim Veshcherevich **Cornell University**

> Bruce Dunham, Chris Mayes SLAC - Stanford University

Outline

- Current Status
- Repurposing Cornell ERL Injector
- CBETA requirements
- Gun
- Laser
- Injector Cryomodule
- Lessons learned

Present Injector Layout

Injector / Merger

and CBETA Final Layout Complete and Beginning

Original Design

Original design: ERL injector

- Moderate charge
- High current
- Note: merger section (B1)

Injector Specification		
Parameter	Value	
Frequency	1.3 GHz	
Bunch charge	77 pC	
Average current	100mA	
ϵ_{rms} (norm.)	< 1.0 µm	
Bunch duration	< 3 ps (rms)	
Beam Energy	4-15 MeV	

ERL – Injector Prototype

High Current

- Peak current of 75mA (world record)
- NaKSb photocathode
- High rep-rate laser
- DC-Voltage source

Source achievements:

- 2.6 day 1/e lifetime at 65mA
- 8h at 65mA
- With only 5W laser power (20W are available)
- now pushing to 100mA

Simulations accurately reproduce photocathode performance with no free parameters, and suggest strategies for further improvement. *1. Cultrera el al., Appl. Phys. Lett.* **103**, 103504 (2013)

- 2. Gulliford el al., Phys. Rev. ST Accel. Beams **16**, 073401 2013
- ✓ Meets all CBETA needs

Emittance summary

Trend becomes more linear around 300 pC...

1. Gulliford el al., Phys. Rev. ST Accel. Beams 16, 073401 – 2013

ERL17 - CERN

✓ Meets all CBETA needs

CBETA Requirements

Table 1.2.1: Primary parameters of the Cornell-BNL ERL Test Accelerator.

	Parameter	Value	Unit
٨	Largest energy	150	${\rm MeV}$
	Injection energy	6	MeV
	Linac energy gain	36	MeV
	Injector current (max)	40	mA
	Linac passes	8 (4 accel. + 4 decel.)	
	Energy sequence in the arc	$42 \rightarrow 78 \rightarrow 114 \rightarrow 150 \rightarrow 114 \rightarrow 78 \rightarrow 42$	MeV
٨	RF frequency	1300.	MHz
\mathbf{X}	Bunch frequency (high-current mode)	325.	MHz
	Circumference harmonic	343	
	Circumference length	79.0997	m
	Circumference time $(pass 1)$	0.263848164	$\mu { m s}$
	Circumference time $(pass 2)$	0.263845098	$\mu { m s}$
	Circumference time $(pass 3)$	0.263844646	$\mu { m s}$
٨	Circumference time $(pass 4)$	0.265003298	$\mu { m s}$
The	Normalized transverse rms emittances	1	$\mu { m m}$
X	Bunch length	4	\mathbf{ps}
	Typical arc beta functions	0.4	m
	Typical splitter beta functions	50	m
	Transverse rms bunch size (max)	1800	$\mu { m m}$
	Transverse rms bunch size (min)	52	$\mu { m m}$
	Bunch charge (min)	1	pC
\bowtie	Bunch charge (max)	123	\mathbf{pC}

Repurposing

- Since 2015
 - Moved Injector to new experimental hall
 - Moved laser room 50m closer to gun
 - Installed 2nd generation segmented insulator gun
 - Preparing for CBETA Installation
 - Dedicated diagnostics beamline

Cornell DC Guns

- 1st Generation Gun emittance and high current studies
 - Suffered (at least) 3 ceramic punch-through failures
 - Operated ~2005-2015 (will continue in new gun dev. lab)
 - Local cathode preparation
- 2nd Generation Gun (2012-Current)
 - Segmented Insulators with integral shielding
 - Modular SF6 tank design for flexibility and service access
 - Scaled up diameter, but retains original electrode and cathode puck design
 - No local cathode preparation all delivered by vacuum suitcase
 - Operational Margin (350kV operation)
- Third Gun built (2016) *(next talk)*
 - Simplified duplicate for BNL LEReC program

2nd Generation DC Gun

DC electron source

Based on scaled up DC-gun technology with:

- Load-locked cathode transfer
- Compact power supply
- Shielded insulator
- Shaped cathode and anode

Duplicate for BNL's low energy electron cooler project.

Holds world record in current and normalized brightness.

Segmented insulator

- Mitigate punch-through: shield the ceramic
- Brazed Alumina segments with kovar ring in each joint.
- Inside: Cu protection rings entirely shield ceramic from field emitted electrons
- Outside: Mount 500M Ω resistors between each segment (1G Ω / 2 in parallel)
 - Allows differentiation between field emission going to ground or going to the rings!
 - If anode floats, can distinguish between emission from stalk, cathode, and direct to ground.

High-Current Operation

- Peak current of 75mA (world record)
- NaKSb photocathode
- High rep-rate laser
- DC-Voltage source

Source achievements:

- 2.6 day 1/e lifetime at 65mA
- 8h at 65mA
- With only 5W laser power (20W are available)
- now pushing to 100mA

Simulations accurately reproduce photocathode performance with no free parameters, and suggest strategies for further improvement.

✓ Source current can meet ERL needs

2

-1

-2 -3

-4 --5 -6

y [mm]

- Used SRF cleanroom facility (class 10)
- Processed up to 485 kV (03/14/2014)
- Processing rate 2kV/Hr. (vertical lines are trips high density)

LEReC Gun processing

- Most recent processing (BNL LEReC gun) See next talk
- Ave. rate of 6kV/hr. (lower density of trips) automated scripts
- Result of more effective use of gas processing?
- Result of improved clean room handling? Single Person

- New Laser Room Installed adjacent to gun
- New oscillator 42 MHz = (1300 MHz / 31).
- E/O Modulator for arbitrary pulse structure flexibility for bunch timing for BPM operations
- Shaping possible if potential uses identified

Fancy Laser Shaping

- Used in test set-up with segmented DC gun
- Tested with low charge e- beam

- Increase emittance performance
- Adaptively fix spatial QE irregularities

J. Maxson et al., Phys. Rev. ST Accel. Beams 18, 023401 (2015).

ERL17 - CERN

Injector Cryomodule

Sufficient margin in Injector Cryomodule to run without Cavity #2 with minor emittance penalty

Diagnostics Beamline

- Dual slit emittance measurement system
- Deflecting cavity
- Spectrometer magnet
- Faraday cup
- Viewscreens

Full 6D Phase Space Mapping Retained

Diagnostics Beamline

3D GPT Injector Model

Code of choice: General Particle Tracer

- 3D Space Charge algorithm
- Load/Create Realistic Particle Distributions
- Overlap field maps and position them in 3D space
- Customizable (define new beamline elements)

Cornell Laboratory for Accelerator-based Sciences and Integration into the Control System Education (CLASSE)

GPT/ASTRA Virtual Accelerator GUI: load machine settings, load optimizer settings, save/restore, independently simulate machine in (near) real time

- DC Gun technology satisfies existing requirements for many applications
 - Flexible temporal structure
 - High currents, flexible bunch charge
 - Robust, long lifetime cathodes
- Design-in diagnostics
- Cleanroom religion
- How can we increase ERL cooperation between labs?

Acknowledgements

Thanks to the Cornell High-brightness Beam Group:

Thank you for your attention!

ERL17 - CERN

Backup Slides

Injector Layout

New gun overview

Laser Shaping

Transversely: clip Gaussian laser profile at a given intensity fraction (typically 50%)

Longitudinally: Birefringent Crystals for pulse stacking:

ERL17 - CERN

Effects of the Laser Shape

Laser upgrade

- Drive laser was incapable of reaching pulse energies needed for nC bunches
- Upgraded using Yb-doped rod amplifiers
 - Capable of 150 W average power (IR) and 1 MW peak power
 - Limited to 50 W due to damage threshold of downstream optics

