

ce

Accelerators and Lasers

In Combined Experiments

ALICE Energy Recovery Linac Prototype: DC Photocathode Electron Gun Commissioning Results

Dr. Lee Jones Accelerator Physics Group ASTeC and The Cockcroft Institute

ALICE ERL Prototype: Technical priorities

Primary Goals:

- 1. Foremost: *To achieve energy recovery with high efficiency*
- 2. Operate a photocathode electron gun and superconducting Linacs
- 3. Produce and maintain bright electron bunches from a photoinjector
- 4. Produce short electron bunches from a bunch compressor

Further Development Goals:

- 1. Achieve energy recovery during FEL operation (with an insertion device that significantly disrupts the electron beam)
- 2. Develop a FEL activity programme which is suitable to investigate the expected synchronisation challenges and demands of a UK XFEL
- 3. Produce simultane **As other on set of the set of the**

ALICE ERL Prototype: Location

Science & Technology Facilities Council

ALICE ERL Prototype: Layout

Drive Laser: Summary

- Diode-pumped Nd:YVO₄
- Wavelength: 1064 nm, doubled to 532 nm
- Pulse repetition rate: 81.25 MHz
- Pulse duration: 7, 13, 28 ps FWHM
- Pulse energy: up to 45 nJ (at cathode)
- Macrobunch duration: 100 μs @ 20 Hz

- Duty cycle: 0.2% (maximum)
- Timing jitter: <1 ps (specified)
 <650 fs (measured)
- Spatial profile: Circular top-hat on the photocathode
- Laser system commissioned at Rutherford Lab in 2005, then moved to Daresbury in 2006

L.B. Jones, Status of the ERLP photoinjector driver laser, Proc. ERL '07, 110 – 112

Gun Assembly:

- JLab IR-FEL gun design
- 500 kV DC power supply
- Cs:GaAs photocathode
- Single bulk-doped ceramic
- Good electrical performance
- Poor mechanical performance

Photocathode Gun: 500kV Power Supply

Photocathode Gun: 500kV Power Supply

Photocathode Gun: 500kV Power Supply

Photocathode Gun: Cathode and HV Electrode

Photocathode Gun: Cathode and HV Electrode

Cathode 'Ball', Insulating Ceramic & Vacuum Vessel

NF₃ Activation in the ALICE gun, February 12th 2009

Science & Technology Facilities Council

ASTeC

The spreadsheet shows the *peak photocurrents* recorded on each Cs and NF₃ cycle. This is the 2^{nd} activation of a VGF cathode wafer supplied by Mateck GmBH (Julich).

NF_3 Activation in the ALICE gun, February 12th 2009

Photocathode Dark Lifetime:

ALICE Photocathode Gun Timeline:

- Photocathode laser system operating since April 2006
- Electron gun installed and connected to a dedicated diagnostic beamline. Gun operated Jul–Aug '06, Jan–Apr '07 & Oct–Nov '07
- Problems experienced with cathode activation. Q.E. poor
- First beam from the gun recorded at 01:08 on Wednesday 16th August 2006, with the gun operating at 250 kV
- Operating at 350 kV soon afterwards
- Routinely conditioned gun to 450 kV
- Steady improvement in both Q.E. & photocathode lifetime
- Problems encountered with beam halo, field emission and high voltage breakdown
- Improved bakeout
 → Better vacuum and photocathode lifetime
- Repeated failure of Wesgo ceramic forced use of Stanford spare

ALICE Photocathode Gun Timeline:

Smaller 12" diameter double Stanford ceramic

Larger 16" diameter single Wesgo ceramic

ALICE Photocathode Gun Timeline:

Feb '07 – Oct '08, we suffered 9 leaks and a major contamination:

- Feb '07 Leak on Pirani gauge pins
- Jun '07 Leak on Pirani gauge pins and also on a spacer flange
- Between June and July, the spacer flange was welded to the anode vessel. The first 2 attempts failed, the 3rd was successful
- Aug '07 Leak on Wesgo ceramic braze at anode vessel end. Spare Wesgo ceramic installed
- Sep '07 Leak on top instrument flange
- Feb '08 Leak on **both** ends of the spare Wesgo ceramic
- Mar '08 Smaller Stanford ceramic installed. Gun contaminated during bake. Complete stripdown and XHV clean required
- Jul '08 Repaired Wesgo ceramic installed. Leak on braze
- Aug '08 Leak on IMG feedthrough, and fine leak valve mechanism fails (used for photocathode activation)

Diagnostic Beamline:

Laser spot size was 4.1 mm FWHM for all experiments

RMS Geometric Emittance (function of bunch charge)

RMS geometric emittance as a function of bunch charge:

- Horizontal (●)

- Vertical (

ALICE ERLp ASTRA model predicted $1 \cdot \pi$ mm-mrad for Q = 80 pC.

Emittance compensation scheme is complex. Was not optimised for each bunch charge.

Some factors are missing from the ASTRA model ^{1,2}

¹ I.V. Bazarov *et al.*, Proc. PAC '07, 1221 – 1223. ² F. Zhou *et al.*, PR–STAB **5**, 094203, 2002.

Bunch Length (function of bunch charge, at 10% level)

Bunch length at 10% of the peak value used due to non-uniformity of the longitudinal profile.

Data were obtained with the RF transverse kicker (●), and with the RF buncher cavity using the *zero-crossing* method¹ (▲), and the *energy mapping* method (■).

Open circles (O) are the results from the ASTRA model.

¹ D.X. Wang et al., Phys. Rev. E, 57(2), 2283 – 2286, 1998

Science & Technology Facilities Council

Total and Tilt-Compensated Energy Spread

BUNCH CHARGE, pC

FWHM Beam Size for $Q_{bunch} = 54 \, \text{pC}$

Comparison of the predicted and measured beam sizes [mm] as a function of solenoid field strength [G] for $Q_{bunch} = 54 \text{ pC}$

Science & Technology Facilities Council

- $Q_{bunch} = 16 \, \mathrm{pC}$
- Solenoid strengths constant

Time (ps)

Longitudinal drive laser profile

• $Q_{bunch} = 16 \, \mathrm{pC}$

Solenoid strengths constant

Longitudinal intensity profile measurements

- $Q_{bunch} = 16 \, \mathrm{pC}$
- Solenoid strengths constant

	Experiment		ASTRA model			
	28 ps	7 ps	flat top	two pulse	single	
e_x [µm]	1.95	1.91	0.56	0.80	0.49	
<i>e</i> _y [μm]	1.43	1.47	0.56	0.80	0.49	
$\Delta z \text{ [mm]}$	19.1	18.6	23.8	23.5	25.5	
ΔE_{tot} [keV]	24.4	29.7	22.5	23	28	
ΔE_{comp} [keV]	5.1	2.8	6.0	7.2	1.3	
$\Delta E_{tot} / \Delta z$ [keV/mm]	1.28	1.60	0.95	0.98	1.10	

Total energy spectra, ΔE_{tot}

Science & Technology Facilities Council

Solenoid strengths constant

ASTRA model flat two 7 ps single pulse top 1.91 0.56 0.80 0.49 1.47 0.56 0.80 0.49 18.6 23.8 23.5 25.5 29.7 22.5 23 28 2.8 6.0 7.2 1.3 1.60 0.95 0.98 1.10

ENERGY, keV

Tilt-compensated energy spectra, ΔE_{comp}

Science & Technology Facilities Council

Conclusion: Longer laser pulses do not confer significant benefits below ~ 20 pC when compared to short pulses in terms of bunch length & energy spectra.

Further reading:

L.B. Jones, Status of the ERLP photoinjector driver laser, Proc. ERL '07, 110 – 112

Y.M. Saveliev *et al.*, Results from ALICE (ERLP) DC photoinjector gun commissioning, Proc. EPAC '08, MOPC062, pages 208-210

Y.M. Saveliev *et al.*, Characterisation of electron bunches from ALICE (ERLP) DC photoinjector gun at two different laser pulse lengths, Proc. EPAC '08, MOPC063, pages 211-213

D.J. Holder on behalf of the ALICE team, First results from the ERL prototype (ALICE) at Daresbury, Proc. Linac '08, WE103, 694 – 696

P.H. Williams, 10 Years of ALICE: From concept to operational user facility, Proc. ERL '15

Acknowledgements:

K.J. Middleman	B.L. Militsyn
Y.M. Saveliev	B.D. Muratori
D.J. Holder	G. Priebe
S.P. Jamison	N.R. Thompson
S.L. Smith	J.W. McKenzie

Thank you for listening

Additional Slides

NF₃ Activation in the ALICE gun, February 12th 2009

34

- Our best photocathode performance (highest Q.E. and best dark lifetime) have been achieved using the Cs-NF₃ activation process
- However, activation success with NF_3 has been inconsistent (no first-peak photocurrent response seen in some activations, prompting a switch to O_2)
- NF₃ requires a higher partial pressure than O_2 , typically a decade higher with O_2 in the mid E-10s, and NF₃ in the mid E-9s. This leads to a longer vacuum recovery
- The dark lifetime has not been specifically monitored since 2009, though chamber base pressure has improved significantly since. We now have good vacuum conditioning
- O₂ is used as the default oxidant due to health & safety considerations
- Re-caesiation typically every 10 to 12 days, having extracted ~ 0.3 C charge
- External connection to Cs channels for *fast re-caesiation* (no SF₆ extraction required)

Process	Date	Initial Q.E.	¹ / _e Lifetime	Life [hrs]	Final Q.E.
Activation	12/02/09	3.9	~ 200	156	0.3
Re-Cs # 1	21/02/09	3.4	~ 900	2,280	0.05
Re-Cs # 2	01/06/09	2.2	270	215	0.63
Re-Cs # 3	10/06/09	2.0	50	28	1.1

Science & Technology Facilities Council

Cryosystem & accelerating modules

Apr – 1st Accelerating module delivered May - 4 K cryo commissioning carried out Jul – 2nd Accelerating module delivered Oct - Linac cooled to 2 K Nov – Booster cooled to 2 K Dec - Modules cooled together

 Simulated a dynamic resistive heat load of ~ 112 W in both modules

- Achieved a pressure stability of ± 0.03 mbar at full (simulated) dynamic load in both of the modules at 2 K
- Achieved ± 0.10 mbar at 1.8 K

ScRF Accelerating modules

- 2 × Stanford/Rossendorf cryomodules, one configured as the *Booster* and the other as the *Main Linac*, also using the JLab HOM coupler
- 2×9 Cell 1.3 GHz cavities per module
- Booster module:
 - 4 MV/m gradient
 - 52 kW RF power

- Main Linac module:
 - 13.5 MV/m gradient
 - 16 kW RF power
- Quality factor, $Q_0 \sim 5 \times 10^9$
- Total cryogenic load:

 $\sim 180\,W$ at $2\,K$

ScRF Accelerating modules

- $2 \times$ Stanford/Rossendorf cryomodules, one configured as the *Booster* and the other as the Main Linac, also using the JLab HOM coupler
- 2×9 Cell 1.3 GHz cavities per module
- Booster module:
 - 4 MV/m gradient
 - 52 kW RF power

- Main Linac module:
 - 13.5 MV/m gradient
 - 16 kW RF power
- Quality factor, $Q_0 \sim 5 \times 10^9$
- Total cryogenic load:

 $\sim 180 \,\mathrm{W}$ at 2 K

Lever tuner

		30		
	Booster		Linac	
	Cavity 1	Cavity 2	Cavity 1	Cavity 2
Verti	cal tests at DE	SY, July - Dec	ember 2005	
E _{acc} [MV/m]	18.9	20.8	17.1	20.4
Q _o	5 × 10 ⁹	5 × 10 ⁹	5 × 10 ⁹	5×10^{9}
Acceptance test	s at Daresbur	y Laboratory,	May - Septemi	ber 2007
Max E _{acc} [MV/m]	10.8	13.5	16.4	12.8
Measured ()	3.5 × 10 ⁹ @	1.3 × 10 ⁹ @	1.9 × 10° @	7.0 × 10 ⁹ @
neusoneo q _o	8.2 MV/m	11 MV/m	14.8 MV/m	9.8 MV/m
Limitation	FE Quench	FE Quench	RF Power	FE Quench

Tunable Free-Electron Laser

24 MeV

28 MeV

JLab Wiggler (on loan)

FEL Tunability by varying:

- electron energy (24-35 MeV range)
 undulator gap
 - (12-20 mm range)

 $\lambda = 4 - 12 \ \mu m$