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ALICE ERL Prototype:
Technical priorities

Primary Goals:

1. Foremost: To achieve energy recovery with high efficiency

2. Operate a photocathode electron gun and superconducting Linacs

3. Produce and maintain bright electron bunches from a photoinjector

4. Produce short electron bunches from a bunch compressor  

Further Development Goals:

1. Achieve energy recovery during FEL operation (with an insertion 
device that significantly disrupts the electron beam)

2. Develop a FEL activity programme which is suitable to investigate 
the expected synchronisation challenges and demands of a UK XFEL

3. Produce simultaneous photon pulses from a laser and an ERL 
photon source which are synchronised at or below the 1 ps level



ALICE ERL Prototype: Location





ALICE ERL Prototype: Layout

� Nominal gun energy 350 keV
� Injector energy 8.35 MeV
� Circulating beam energy 35 MeV
� Linac RF frequency 1.3 GHz
� Bunch repetition rate 81.25 MHz
� Max bunch charge 80 pC 
� Bunch train 100 µs
� Max. average current 13 µA



Drive Laser: Summary

l Diode-pumped Nd:YVO4

l Wavelength: 1064 nm, doubled to 532 nm

l Pulse repetition rate: 81.25 MHz

l Pulse duration: 7, 13, 28 ps FWHM

l Pulse energy: up to 45 nJ (at cathode)

l Macrobunch duration: 100 µs @ 20 Hz

l Duty cycle: 0.2% (maximum)

l Timing jitter: < 1 ps (specified)
< 650 fs (measured)

l Spatial profile: 
Circular top-hat on the photocathode

l Laser system commissioned at Rutherford Lab 
in 2005, then moved to Daresbury in 2006

L.B. Jones, Status of the ERLP photoinjector
driver laser, Proc. ERL ’07, 110 – 112
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• JLab IR-FEL gun design

• 500 kV DC power supply

• Cs:GaAs photocathode

• Single bulk-doped ceramic

• Good electrical performance

• Poor mechanical performance

Gun Assembly:

Laser



Photocathode Gun:
500kV Power Supply



Photocathode Gun:
500kV Power Supply



Photocathode Gun:
500kV Power Supply



Photocathode Gun:
Cathode and HV Electrode



Photocathode Gun:
Cathode and HV Electrode



Cathode ‘Ball’, Insulating
Ceramic & Vacuum Vessel



NF3 Activation in the 
ALICE gun, February 12th 2009
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The spreadsheet shows the peak photocurrents recorded on each Cs and NF3 cycle.
This is the 2nd activation of a VGF cathode wafer supplied by Mateck GmBH (Julich).

Light source intensity reduced

~ 3.9 % Q.E.
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NF3 Activation in the 
ALICE gun, February 12th 2009

Peak Q.E. ~ 3.9 % at 532 nm



Photocathode Dark Lifetime:

1/e dark lifetime 
~ 900 hours

u

u





• Photocathode laser system operating since April 2006
• Electron gun installed and connected to a dedicated diagnostic

beamline. Gun operated Jul–Aug ‘06, Jan–Apr ‘07 & Oct–Nov ‘07
• Problems experienced with cathode activation.  Q.E. poor
• First beam from the gun recorded at 01:08 on Wednesday 16th

August 2006, with the gun operating at 250 kV
• Operating at 350 kV soon afterwards
• Routinely conditioned gun to 450 kV
• Steady improvement in both Q.E. & photocathode lifetime
• Problems encountered with beam halo, field emission and high  

voltage breakdown
• Improved bakeout è Better vacuum and photocathode lifetime
• Repeated failure of Wesgo ceramic forced use of Stanford spare

ALICE Photocathode Gun Timeline:



ALICE Photocathode Gun Timeline:

Larger 16” diameter
single Wesgo ceramic 

Smaller 12” diameter 
double Stanford ceramic



Feb ‘07 – Oct ’08,  we suffered 9 leaks and a major contamination:

• Feb ‘07 – Leak on Pirani gauge pins

• Jun ‘07 – Leak on Pirani gauge pins and also on a spacer flange

• Between June and July, the spacer flange was welded to the

anode vessel.  The first 2 attempts failed, the 3rd was successful

• Aug ‘07 – Leak on Wesgo ceramic braze at anode vessel end. 

Spare Wesgo ceramic installed

• Sep ‘07 – Leak on top instrument flange

• Feb ‘08 – Leak on both ends of the spare Wesgo ceramic

• Mar ‘08 – Smaller Stanford ceramic installed. Gun contaminated

during bake. Complete stripdown and XHV clean required

• Jul ‘08 – Repaired Wesgo ceramic installed.  Leak on braze

• Aug ‘08 – Leak on IMG feedthrough, and fine leak valve

mechanism fails (used for photocathode activation)

ALICE Photocathode Gun Timeline:



Diagnostic Beamline:

Courtesy Y.M. Saveliev, DL
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Laser spot size was 4.1 mm FWHM for all experiments



RMS geometric emittance
as a function of bunch
charge:

- Horizontal (l)

- Vertical (n)

ALICE ERLp ASTRA model
predicted 1·p mm-mrad
for Q = 80 pC.

Emittance compensation
scheme is complex. Was
not optimised for each
bunch charge.

Some factors are missing
from the ASTRA model 1,2
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1 I.V. Bazarov et al., Proc. PAC ’07, 1221 – 1223. 
2 F. Zhou et al., PR–STAB 5, 094203, 2002.

RMS Geometric Emittance (function of bunch charge)
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Data were obtained with 
the RF transverse kicker 
(l), and with the RF 
buncher cavity using the 
zero-crossing method1

(p), and the energy 
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Open circles (¡) are the 
results from the ASTRA 
model. 

Bunch Length (function of bunch charge, at 10% level)

1 D.X. Wang et al., Phys. Rev. E, 57(2), 2283 – 2286, 1998
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Total energy spread (DEtot) 
and compensated energy 
spread (DEcomp) measured 
as a function of Qbunch.

Data were obtained using 
the magnetic spectrometer.
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Open circles (¡) are the 
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Experiment ASTRA model

28 ps 7 ps flat
top

two
pulse single

ex [µm] 1.95 1.91 0.56 0.80 0.49

ey [µm] 1.43 1.47 0.56 0.80 0.49

Dz [mm] 19.1 18.6 23.8 23.5 25.5

DEtot [keV] 24.4 29.7 22.5 23 28

DEcomp
[keV] 5.1 2.8 6.0 7.2 1.3

DEtot /Dz
[keV/mm] 1.28 1.60 0.95 0.98 1.10

Longitudinal drive laser profile

PI Gun Driven by Different Laser Pulse Durations

• Qbunch = 16 pC

• Solenoid strengths constant
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Longitudinal intensity profile measurements

Experiment ASTRA model

28 ps 7 ps flat
top

two
pulse single

ex [µm] 1.95 1.91 0.56 0.80 0.49

ey [µm] 1.43 1.47 0.56 0.80 0.49

Dz [mm] 19.1 18.6 23.8 23.5 25.5

DEtot [keV] 24.4 29.7 22.5 23 28

DEcomp
[keV] 5.1 2.8 6.0 7.2 1.3
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[keV/mm] 1.28 1.60 0.95 0.98 1.10
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• Qbunch = 16 pC

• Solenoid strengths constant

Total energy spectra, DEtot

Experiment ASTRA model

28 ps 7 ps flat
top

two
pulse single

ex [µm] 1.95 1.91 0.56 0.80 0.49

ey [µm] 1.43 1.47 0.56 0.80 0.49
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DEcomp
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Tilt-compensated energy spectra, DEcomp

Experiment ASTRA model
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ASTRA Longitudinal phase space predictions

Conclusion: Longer laser pulses do not confer significant benefits below ~20pC 
when compared to short pulses in terms of bunch length & energy spectra.

Experiment ASTRA model

28 ps 7 ps flat
top

two
pulse single

ex [µm] 1.95 1.91 0.56 0.80 0.49

ey [µm] 1.43 1.47 0.56 0.80 0.49

Dz [mm] 19.1 18.6 23.8 23.5 25.5

DEtot [keV] 24.4 29.7 22.5 23 28

DEcomp
[keV] 5.1 2.8 6.0 7.2 1.3

DEtot /Dz
[keV/mm] 1.28 1.60 0.95 0.98 1.10



Thank you for listening ……
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Additional Slides
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NF3 Activation in the 
ALICE gun, February 12th 2009

• Our best photocathode performance (highest Q.E. and best dark lifetime) have been 
achieved using the Cs-NF3 activation process

• However, activation success with NF3 has been inconsistent (no first-peak photocurrent 
response seen in some activations, prompting a switch to O2)

• NF3 requires a higher partial pressure than O2, typically a decade higher with O2 in the 
mid E-10s, and NF3 in the mid E-9s.  This leads to a longer vacuum recovery

• The dark lifetime has not been specifically monitored since 2009, though chamber base 
pressure has improved significantly since.  We now have good vacuum conditioning

• O2 is used as the default oxidant due to health & safety considerations

• Re-caesiation typically every 10 to 12 days, having extracted ~ 0.3 C charge

• External connection to Cs channels for fast re-caesiation (no SF6 extraction required)

Process Date Initial Q.E. 1/e Lifetime Life [hrs] Final Q.E.

Activation 12/02/09 3.9 ~ 200 156 0.3

Re-Cs # 1 21/02/09 3.4 ~ 900 2,280 0.05

Re-Cs # 2 01/06/09 2.2 270 215 0.63

Re-Cs # 3 10/06/09 2.0 50 28 1.1



• Simulated a dynamic resistive heat 

load of ~112 W in both modules

• Achieved a pressure stability of

± 0.03 mbar at full (simulated) dynamic 

load in both of the modules at 2 K

• Achieved ± 0.10 mbar at 1.8 K

Apr – 1st Accelerating module delivered

May - 4 K cryo commissioning carried out

Jul – 2nd Accelerating module delivered

Oct - Linac cooled to 2 K

Nov – Booster cooled to 2 K

Dec - Modules cooled together

2006

Cryosystem & accelerating modules



l 2 × Stanford/Rossendorf cryomodules, one 
configured as the Booster and the other as the 
Main Linac, also using the JLab HOM coupler

l 2 × 9 - Cell 1.3 GHz cavities per module
l Booster module:

l 4 MV/m gradient
l 52 kW RF power

ScRF Accelerating modules

l Main Linac module:
l 13.5 MV/m gradient
l 16 kW RF power

l Quality factor, Q0 ~ 5 × 109

l Total cryogenic load:
~ 180 W at 2 K



l 2 × Stanford/Rossendorf cryomodules, one 
configured as the Booster and the other as the 
Main Linac, also using the JLab HOM coupler

l 2 × 9 - Cell 1.3 GHz cavities per module
l Booster module:

l 4 MV/m gradient
l 52 kW RF power

l Main Linac module:
l 13.5 MV/m gradient
l 16 kW RF power

l Quality factor, Q0 ~ 5 × 109

l Total cryogenic load:
~ 180 W at 2 K

Booster Linac

Cavity 1 Cavity 2 Cavity 1 Cavity 2

Vertical tests at DESY, July - December 2005

Eacc [MV/m] 18.9 20.8 17.1 20.4

Qo 5 × 109 5 × 109 5 × 109 5 × 109

Acceptance tests at Daresbury Laboratory, May - September 2007

Max Eacc [MV/m] 10.8 13.5 16.4 12.8

Measured Qo
3.5 × 109 @ 
8.2 MV/m

1.3 × 109 @ 
11 MV/m

1.9 × 109 @ 
14.8 MV/m

7.0 × 109 @ 
9.8 MV/m

Limitation FE Quench FE Quench RF Power FE Quench

ScRF Accelerating modules



Encoders

FEL Tunability by varying:
• electron energy

(24-35 MeV range)
• undulator gap

(12-20 mm range)

l = 4 - 12 µm

JLab
Wiggler

(on loan)

Tunable Free-Electron Laser


