# Studies of CSR and Microbunching at JLab

#### **Chris Tennant**

Jefferson Laboratory

7<sup>th</sup> International ERL Workshop | June 18-23, 2017

#### Outline

Past: FEL Demo **Present:** LERF & CEBAF ✓ "bulk" CSR studies  $\checkmark$  isochronous arc design  $\checkmark$  development of a microbunching gain code **Future:** Electron-Ion Collider microbunching with magnetized beams

### What is CSR?

#### mechanism:

- ✓ for a high brightness bunch is on a curved orbit, fields emitted from the tail can overtake and interact with the head of the bunch
- ✓ tail loses energy, head gains energy (tail-head effect)

 $\checkmark$  is an issue at all energies



- the results are a redistribution of particles (in an undesirable way):
  - ✓ projected emittance growth
  - ✓ projected energy spread growth
  - ✓ centroid energy loss

"bulk"

# Jefferson Lab ERL Demo (1997-2001)



- the ERL Demo recovered 48 MeV of 5 mA beam through a single cryomodule
- CW operation allows high average output power at modest charge per bunch (2.3 kW)
- note similarity with linac-driven light source topology



### **Coherent Synchrotron Radiation**

- excessive CSR hitting downstream mirror and limiting power output → decompressor chicane
- CSR does not present an operational impediment
- CSR used as diagnostic aid in daily machine setup ("miniphase")
  - tune longitudinal match and verify full bunch compression when CSR-enhancement is observed on downstream SLM

#### Synchrotron Light Monitor: Second Arc



#### LERF

- ERL-based FEL driver
  - ✓ **Injector:** DC photocathode gun (135 pC) + booster accelerated to 9 MeV
  - ✓ **SRF Linac:** accelerated to 130 MeV at  $-10^{\circ}$  to impart a  $\phi$ -E correlation
  - ✓ Recirculator: bunch rotated upright and RF-induced curvature eliminated
- experimentally characterize the effects of CSR on the beam through an *unconventional compressor*



#### **CSR-Induced Energy Loss**

measure energy loss by recording BPMs in dispersive region



### **Energy Distribution vs Compression**

#### record momentum distribution on SLM as function of compression



#### **Simulated Energy Distribution**



#### **Evolution of (t,p)-Space**



#### **Beam Characterization**



- nominal operation decompresses the bunch through arc
  - ✓ experiences two parasitic compressions in Bates bend
  - ✓ experiences a single parasitic compression in chicane

|    | Cross-Phased                |                       |            | Nominal                     |                       |              |  |
|----|-----------------------------|-----------------------|------------|-----------------------------|-----------------------|--------------|--|
|    | ε <sub>x</sub><br>(mm-mrad) | β <sub>x</sub><br>(m) | $\alpha_x$ | ε <sub>x</sub><br>(mm-mrad) | β <sub>x</sub><br>(m) | $\alpha^{x}$ |  |
| OF | 15.2                        | 11.2                  | -0.1       | 15.2                        | 11.2                  | -0.1         |  |
| 2F | 17.5                        | 11.8                  | 6.3        | 17.9                        | 12.9                  | 6.6          |  |
| 3F | 20.8                        | 3.7                   | -1.0       | 30.5                        | 3.1                   | -0.7         |  |
| 4F | 21.3                        | 11.8                  | -5.5       | 41.8                        | 16.8                  | -8.0         |  |

#### **Isochronous Arc Study**

|                              | Example A                                   | Example B                               |
|------------------------------|---------------------------------------------|-----------------------------------------|
| Energy (GeV)                 | 1.3                                         | 1.3                                     |
| $\epsilon_{x,y}$ (mm-mrad)   | 0.25                                        | 0.25                                    |
| $\sigma_{\delta \text{E/E}}$ | 9×10 <sup>-6</sup>                          | 9×10 <sup>-6</sup>                      |
| σ <sub>t</sub> (ps)          | 3.0                                         | 3.0                                     |
| Structure                    | Periodically<br>isochronous &<br>achromatic | Globally<br>isochronous &<br>achromatic |



#### **Arc: Example A**

- effective suppression of CSR-induce emittance growth

   an initial CSR kick is cancelled by a second kick a half-betatron wavelength away
- design manifests no evidence of microbunching gain



#### **Arc: Example B**



## What is Microbunching?

- initial **density** modulation can induce **energy** modulation due to the presence of short-range wakefields (e.g. LSC or CSR)
- the energy modulation can be converted to density modulation via the R<sub>56</sub> in the beamline
- process may result in an enhancement of the initial **density** modulation → *microbunching instability*



### Why is it Important in ERLs?

- microbunching is a relatively new collective effect
- a lot of work has been done investigating chicanes



- recent efforts address CSR and microbunching in recirculation arcs
- ERLs have potential to seed microbunching instability
  - ✓ low injection energy (efficiency)
  - ✓ long linac sections
  - ✓ large numbers of dipoles (merger, arcs, chicanes)
- ERL-driven light sources (short bunch, high peak current) must contend with microbunching, but so do other applications (e.g. bunched beam cooler)

### **Possible Experimental Tests at JLab**

#### CEBAF (Y. Roblin)

- compare different tunings of arc transport
- measure effectiveness of optics balance
- challenge to generate a bright enough beam

✓ would require a modified front end

#### LERF (R. Li)

- could generate microbunching with high charge
   (60-250) pC demonstrated
- could vary contributions from LSC or CSR

✓ change injector energy (5-9) MeV

- "controlled" microbunching with initial DL induced modulation
- study CSR at low energy

#### **Fast Microbunching Gain Code**

- developed by Cheng-Ying Tsai (see ERL'15 Proceedings)
- semi-analytical linear Vlasov-solver which includes relevant impedances:
  - CSR (steady-state relativistic and non-relativistic, with shielding, transient)
  - $\checkmark$  LSC and linac geometric wakes
- includes acceleration and deceleration, allows for horizontal and vertical bending, handles magnetized beams
- allows start-to-end gain calculations
  - not enough to compute gain for each section and multiply (underestimates gain)
- benchmarked with elegant (i.e. time-domain method)
- limitations:
  - $\checkmark$  linear  $\rightarrow$  does not include sextupoles, curvature from RF, etc.
  - $\checkmark$  coasting beam model  $\rightarrow$  not valid when modulation wavelength is comparable to bunch length

#### JLab Electron Ion Collider *(future)* a ring-ring design for colliding polarized electrons (originating from CEBAF) with medium energy ions (new ion complex) 8-100 GeV **Ion Collider Ring Interaction Point Interaction Point Electron Collider Ring** Booster 3-10 GeV 8 GeV Ion Source **Electron Source 12 GeV CEBAF** 100 meter

# Weak Cooling: Backup

- DC cooling for emittance reduction
- BB cooling to combat intra-beam scattering



- single-pass, ERL-driven cooler which invokes a magnetized beam

   immerse cathode in solenoid field
- characterized by a Larmor (defines the beam temperature in the cooling solenoid) and drift emittance (defines the beam size in the solenoid)



#### **Results for Weak Cooling**

| Name                       | Value                | Unit |
|----------------------------|----------------------|------|
| Beam energy                | 55                   | MeV  |
| Bunch charge               | 420                  | рС   |
| Compression factor         | 0.28                 |      |
| ∆E/E <i>(uncorrelated)</i> | 2.4×10 <sup>-3</sup> |      |



#### Landau Damping

- smearing of horizontal phase space (due to R<sub>51</sub>)
- effective phase mixing when  $R_{51}\sigma_x > \lambda$



# Summary

- performed initial studies on the "bulk" effects of CSR in the LERF
- demonstrated bunch length compression with lasing running on the "wrong side" of the RF waveform
- possibility of doing interesting experimental work using existing infrastructure
  - ✓ CEBAF: optics balance for CSR and microbunching suppression
  - ✓ LERF: SC and CSR driven microbunching
- development of fast and efficient microbunching gain solver
  - ✓ enabled quick analysis of beamlines
  - $\checkmark$  provided insights into lattice requirements for gain suppression
- electron-ion collider design requires working carefully through CSR and microbunching issues and involves working in an interesting parameter regime

✓ low energy (SC), high charge (SC+CSR), lots of dipoles (CSR)

 $\checkmark$  do not have adequate tools at present to model

# ACKNOWLEDGEMENTS

Steve Benson Sandra Bierdon David Douglas Auralee Edelen Pavel Evtushenko Chris Hall Geoff Krafft Bob Legg Rui Li Stephen Milton Yves Roblin Todd Satogata Mike Spata Mike Tiefenback Cheng-Ying Tsai



### **Coherent Synchrotron Radiation**

- excessive CSR hitting downstream mirror and limiting power output → decompressor chicane
- CSR does not present an operational impediment
- observe beam filamentation as we vary bunch length compression







# **Energy Distribution vs Compression**

Loss at SLM5F02 (%)

-0.04

-0.06 -0.08

-0.10

-1400 -1200

-1000 -800

-<sup>600</sup>-400 -QT2F08 (Gauss)

-200

200 400 600

- surface plot created from projections of momentum distribution as a function of compression state
- areas of depletion ("troughs") correspond to maximum energy loss

191

272 08 (C)



# **Modeling Microbunching**

- time-domain analysis of microbunching (particle tracking) is a challenge
- initial density modulation needs to be small enough to remain in linear regime but large enough to avoid numerical artifacts → large numbers of particles and computationally intensive
- difficult to do parametric scans



### Suppression of CSR-induced $\mu$ BI Gain

For the conditions of CSR gain suppression, it is key to make R<sub>56</sub>(s<sub>i</sub>'->s<sub>f</sub>) as small as possible

$$K(s,s') = \frac{ik}{\gamma} \frac{I(s)}{I_A} C(s') R_{56}(s' \to s) Z(kC(s'),s') \times [\text{Landau damping}]$$

 For the simplest case of **dipole-straight-dipole**, the simplified expression of *R*<sub>56</sub>(s'<sub>i</sub>->s<sub>f</sub>) can be obtained by matrix multiplication

$$R_{56}(s_i \to s_f) \simeq \left[ \left( \frac{s_i - L_b}{\rho_b^2} \sqrt{\beta_i \beta_f} + \frac{s_i L_b \alpha_i}{\rho_b^2} \sqrt{\frac{\beta_f}{\beta_i}} \right) \sin \psi_{if} + \left( \frac{s_i L_b}{\rho_b^2} \sqrt{\frac{\beta_f}{\beta_i}} \right) \cos \psi_{if} \right] s_f$$

- To keep the amplitude of  $R_{56}(s'_i s_f)$  as small as possible, we need to:
  - keep  $\beta$  functions as small as possible
  - keep  $|\alpha|$  function not too small, so as to meet
  - phase difference between dipoles  $\psi_{if} = \psi_f \psi_i$  close to  $m\pi$  (*m*: integer)
  - keep bending radius  $\rho_{\rm b}$  as large as possible

(courtesy C.-Y. Tsai)

#### **JLEIC Baseline Parameters**

| CM Energy                 | GeV                              | <b>21.9</b><br>(low) |                    | <b>44.7</b><br>(medium) |                    | <b>63.3</b><br>(high) |                    |
|---------------------------|----------------------------------|----------------------|--------------------|-------------------------|--------------------|-----------------------|--------------------|
|                           |                                  | р                    | е                  | р                       | е                  | р                     | е                  |
| Beam energy               | GeV                              | 40                   | 3                  | 100                     | 5                  | 100                   | 10                 |
| Collision frequency       | MHz                              | 476                  |                    | 476                     |                    | 476/4=119             |                    |
| Particles per bunch       | <b>10</b> <sup>10</sup>          | 0.98                 | 3.7                | 0.98                    | 3.7                | 3.9                   | 3.7                |
| Beam current              | А                                | 0.75                 | 2.8                | 0.75                    | 2.8                | 0.75                  | 0.71               |
| Polarization              | %                                | 80                   | 80                 | 80                      | 80                 | 80                    | 75                 |
| Bunch length, RMS         | cm                               | 3                    | 1                  | 1                       | 1                  | 2.2                   | 1                  |
| Norm. emitt., hor./vert.  | μm                               | 0.3/0.3              | 24/24              | 0.5/0.1                 | 54/10.8            | 0.9/0.18              | 432/86.4           |
| Horizontal/vertical β*    | cm                               | 8/8                  | 13.5/13.5          | 6/1.2                   | 5.1/1              | 10.5/2.1              | 4/0.8              |
| Vert. beam-beam param.    |                                  | 0.015                | 0.092              | 0.015                   | 0.068              | 0.008                 | 0.034              |
| Laslett tune-shift        |                                  | 0.06                 | 7x10 <sup>-4</sup> | 0.055                   | 6x10 <sup>-4</sup> | 0.056                 | 7x10 <sup>-5</sup> |
| Detector space, up/down   | m                                | 3.6/7                | 3.2/3              | 3.6/7                   | 3.2/3              | 3.6/7                 | 3.2/3              |
| Hourglass (HG) reduction  |                                  | 1                    |                    | 0.87                    |                    | 0.75                  |                    |
| Luminosity/IP, w/HG, 1033 | cm <sup>-2</sup> s <sup>-1</sup> | 2.5                  |                    | 21.4                    |                    | 5.9                   |                    |



### **CSR for Multiple Recirculations**

- CSR wake is proportional to derivative of bunch distribution
- for a flat-top, wake is roughly linear across the bunch
   ✓ use RF cavity to correct slope and energy loss each turn



## **CSR for Multiple Recirculations**

- CSR wake is proportional to derivative of bunch distribution
- for a flat-top, wake is roughly linear across the bunch
   ✓ use RF cavity to correct slope and energy loss each turn



#### **Miscellaneous**

• scaling:  $\lambda_{opt} \propto R_{56}^{ARC} \sigma_{\delta}$